Publications by authors named "Chao-Feng Wu"

Article Synopsis
  • Research on piezoelectric materials focuses on creating effective actuation methods for various applications, especially at low electric fields.
  • The incorporation of lead magnesium niobate relaxors into lead zirconate titanium results in improved electrostrains and lower hysteresis, achieving a high inverse piezoelectric coefficient of 1380 pm/V.
  • Advanced techniques like in situ synchrotron X-ray diffraction demonstrate that the enhanced performance is due to better domain wall movement, reduced lattice distortion, and smaller domain structures, addressing issues of energy efficiency and actuation.
View Article and Find Full Text PDF

Despite the pivotal role of stannum doping in achieving ultrahigh piezoelectric performance in barium titanate-based ceramics, the fundamental mechanisms underlying this enhancement remain elusive. Here, we introduce a single variable nonstoichiometric stannum strategy in lead-free barium titanate-based ceramics with giant piezoelectricity, revealing that stannum doping contributes intrinsically and extrinsically to enhance piezoelectricity. Density functional theory calculations elucidate the intrinsic enhancement of polarization arising from lattice distortion and increased space for titanium-oxygen bonds induced by optimal stannum doping, which is corroborated by Rayleigh analysis.

View Article and Find Full Text PDF

Background: Nonalcoholic fatty liver disease (NAFLD) is associated with disordered lipid and iron metabolism. Our previous study has substantiated the pivotal role of Caveolin-1 (Cav-1) in protecting hepatocytes and mediating iron metabolism in the liver. This study aimed to explore the specific mechanisms underlying the regulation of iron metabolism by Cav-1 in NAFLD.

View Article and Find Full Text PDF

Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κ ) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt-centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations.

View Article and Find Full Text PDF

Thermoelectric technology enables the harvest of waste heat and its direct conversion into electricity. The conversion efficiency is determined by the materials figure of merit Here we show a maximum of ~2.8 ± 0.

View Article and Find Full Text PDF

AgBiSe and AgSbSe, two typical examples of Te-free I-V-VI chalcogenides, are drawing much attention due to their promising thermoelectric performance. Both compounds were synthesized melting and consolidated by spark plasma sintering. The role of annealing on the transport properties of polymorphous AgBiSe and monophase AgSbSe was studied.

View Article and Find Full Text PDF

BiTe thermoelectric materials are utilized for refrigeration for decades, while their application of energy harvesting requires stable thermoelectric and mechanical performances at elevated temperatures. This work reveals that a steady of ≈0.85 at 200 to 300 °C can be achieved by doping small amounts of copper iodide (CuI) in BiTeSe-silicon carbide (SiC) composites, where SiC nanodispersion enhances the flexural strength.

View Article and Find Full Text PDF

Nanoporous architecture has long been predicted theoretically for its proficiency in suppressing thermal conduction, but less concerned as a practical approach for better thermoelectric materials hitherto probably due to its technical challenges. This article demonstrates a study on nanoporous PbSe-SiO composites fabricated by a facile method of mechanical alloying assisted by subsequent wet-milling and then spark plasma sintering. Owing to the formation of random nanopores and additional interface scattering, the lattice thermal conductivity is limited to a value as low as 0.

View Article and Find Full Text PDF

P-type SnS compound and SnSSe solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.

View Article and Find Full Text PDF

Recent findings about ultrahigh thermoelectric performance in SnSe single crystals have stimulated related research on this simple binary compound, which is focused mostly on its polycrystalline counterparts, and particularly on electrical property enhancement by effective doping. This work systematically investigated the thermoelectric properties of polycrystalline SnSe doped with three alkali metals (Li, Na, and K). It is found that Na has the best doping efficiency, leading to an increase in hole concentration from 3.

View Article and Find Full Text PDF

SnSe, a "simple" and "old" binary compound composed of earth-abundant elements, has been reported to exhibit a high thermoelectric performance in single crystals, which stimulated recent interest in its polycrystalline counterparts. This work investigated the electrical and thermal transport properties of pristine and Na-doped SnSe1-xTex polycrystals prepared by mechanical alloying and spark plasma sintering. It is revealed that SnSe1-xTex solid solutions are formed when x ranges from 0 to 0.

View Article and Find Full Text PDF

Both lead selenide (PbSe) and tin selenide (SnSe) are promising thermoelectric compounds consisting of earth-abundant elements, between which solid solutions can be formed over a wide composition range. This study investigated the electrical and thermal transport properties of n-type Pb1-xSnxSe (x = 0, 0.01, 0.

View Article and Find Full Text PDF