Spermiogenesis is a complex and tightly regulated process, consisting of acrosomal biogenesis, condensation of chromatin, flagellar assembly, and disposal of extra cytoplasm. Previous studies have reported that sperm flagellar 2 (SPEF2) deficiency causes severe asthenoteratozoospermia owing to spermiogenesis failure, but the underlying molecular mechanism in humans remains unclear. Here, we performed proteomic analysis on spermatozoa from three SPEF2 mutant patients to study the functional role of SPEF2 during sperm tail development.
View Article and Find Full Text PDFGenetics-associated asthenoteratozoospermia is often seen in patients with multiple morphological abnormalities of the sperm flagella (MMAF). Although 24 causative genes have been identified, these explain only approximately half of patients with MMAF. Since sperm flagella and motile cilia (especially respiratory cilia) have similar axonemal structures, many patients with MMAF also exhibit respiratory symptoms, such as recurrent airway infection, chronic sinusitis, and bronchiectasis, which are frequently associated with primary ciliary dyskinesia (PCD), another recessive disorder.
View Article and Find Full Text PDFSequence variants of ZMYND15 cause azoospermia in humans, but they have not yet been reported in infertile men with severe oligozoospermia (SO). We performed whole-exome and Sanger sequencing to identify suspected causative variants in 414 idiopathic participating infertile men with SO or azoospermia. Three novel homozygous truncating variants in ZMYND15 were identified in three of the 219 (1.
View Article and Find Full Text PDFOligoasthenoteratozoospermia (OAT) refers to the combination of various sperm abnormalities, including a decreased sperm count, reduced motility, and abnormal sperm morphology. Only a few genetic causes have been shown to be associated with OAT. Herein, we identified a novel homozygous frameshift mutation in meiosis-specific nuclear structural 1 (MNS1; NM_018365: c.
View Article and Find Full Text PDFThe syndrome of multiple morphological abnormalities of the sperm flagella (MMAF) is a specific kind of asthenoteratozoospermia with a mosaic of flagellar morphological abnormalities (absent, short, bent, coiled, and irregular flagella). MMAF was proposed in 2014 and has attracted increasing attention; however, it has not been clearly understood. In this review, we elucidate the definition of MMAF from a systematical view, the difference between MMAF and other conditions with asthenoteratozoospermia or asthenozoospermia (such as primary mitochondrial sheath defects and primary ciliary dyskinesia), the knowledge regarding its etiological mechanism and related genetic findings, and the clinical significance of MMAF for intracytoplasmic sperm injection and genetic counseling.
View Article and Find Full Text PDFAsian J Androl
September 2019
Androgen insensitivity syndrome (AIS), an X-linked recessive genetic disorder of sex development, is caused by mutations in the androgen receptor (AR) gene, and is characterized by partial or complete inability of specific tissues to respond to androgens in individuals with the 46,XY karyotype. This study aimed to investigate AR gene mutations and to characterize genotype-phenotype correlations. Ten patients from unrelated families, aged 2-31 years, were recruited in the study.
View Article and Find Full Text PDFBackground: The genetic causes of the majority of male and female infertility caused by human non-obstructive azoospermia (NOA) and premature ovarian insufficiency (POI) with meiotic arrest are unknown.
Objective: To identify the genetic cause of NOA and POI in two affected members from a consanguineous Chinese family.
Methods: We performed whole-exome sequencing of DNA from both affected patients.