Vaccines offer prophylactic treatments against atherosclerosis by eliciting effector T cell and antibody responses, which require effective delivery of antigen and adjuvant to activate dendritic cells (DC). Here we show that individual conjugation of antigen p210 and adjuvant CpG oligodeoxynucleotides onto superparamagnetic iron oxide nanoparticles formulates a nanovaccine cocktail that activates DCs for antigen cross-presentation and induction of co-stimulatory signals, cytokines and CD8 effector/effector memory T cell responses. This nanovaccine modulates the DCs in the draining lymph nodes, activates both CD4 and CD8 T cells, elicits memory responses, and induces both anti-p210 IgM and IgG antibodies to suppress atherosclerosis.
View Article and Find Full Text PDFNon-interferometric synthetic aperture imaging (SAI) shows significant potential in Earth observation, astronomy, and remote sensing. However, these methods often involve time-consuming processes for wave field acquisition and iterative image reconstruction. In this Letter, we present a non-iterative far-field synthetic aperture imaging method, macroscopic space-domain Kramers-Kronig relations synthetic aperture imaging (MSKR-SAI).
View Article and Find Full Text PDFSmall Methods
February 2025
3D fluorescence super-resolution imaging technology can reconstruct the 3D structure of biological cells in space, which is crucial for observing the intricate internal structures of cells and studying the organization and function of tissues and organs. However, even with super-resolution imaging techniques that surpass the diffraction limit, the axial resolution typically only reaches one-third to one-half of the lateral resolution. Achieving true axial or 3D super-resolution imaging of samples remains a significant challenge.
View Article and Find Full Text PDFOptical diffraction tomography (ODT) is an important technique for three-dimensional (3D) imaging of semi-transparent biological samples, enabling volumetric visualization of living cells, cultures, and tissues without the need for exogenous dyes. However, ODT faces significant challenges in imaging complex biological specimens due to the limited specificity of refractive index (RI) and the coupled relationship between absorption and phase in image formation. Here, we present multi-modal transport of intensity diffraction tomography (MM-TIDT), a high-speed 3D microscopy technique that integrates an electrically tunable lens with modified illumination patterns to decouple phase and absorption information.
View Article and Find Full Text PDFTraditional non-interferometric quantitative phase imaging (QPI) methods often face challenges in realizing rapid and accurate imaging of large-phase samples, mainly due to slow convergence and dependence on object approximation models. In this Letter, we propose a new, to the best of our knowledge, non-interferometric QPI approach that leverages iterative Kramers-Kronig (KK) relations, named iKK-QPI, to achieve high-accuracy quantitative measurement of objects with large-phase values. In the current KK relations reconstruction framework, we impose real-part constraints on the cepstrum, breaking the restriction of weak scattering condition.
View Article and Find Full Text PDFTo reveal the fundamental aspects hidden behind a variety of transient events in mechanics, physics, and biology, the highly desired ability to acquire three-dimensional (3D) images with ultrafast temporal resolution has been long sought. As one of the most commonly employed 3D sensing techniques, fringe projection profilometry (FPP) reconstructs the depth of a scene from stereo images taken with sequentially structured illuminations. However, the imaging speed of current FPP methods is generally capped at several kHz, which is limited by the projector-camera hardware and the number of fringe patterns required for phase retrieval and unwrapping.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
November 2024
Fourier ptychographic microscopy (FPM) is a high-throughput computational imaging technology that enables wide-field and high-resolution imaging of samples with both amplitude and phase information. It holds great promise for quantitative phase imaging (QPI) on a large population of cells in parallel. However, detector undersampling leads to spectrum aliasing, which may significantly degenerate the resolution, efficiency, and quality of QPI, especially when an objective lens with a high space-bandwidth product is used.
View Article and Find Full Text PDFFourier ptychographic microscopy (FPM) enables high-resolution, wide-field imaging of both amplitude and phase, presenting significant potential for applications in digital pathology and cell biology. However, artifacts commonly observed at the boundaries of reconstructed images can significantly degrade imaging quality and phase retrieval accuracy. These boundary artifacts are typically attributed to the use of the fast Fourier transform (FFT) on non-periodic images.
View Article and Find Full Text PDFLens-free on-chip microscopy (LFOCM) is a powerful computational imaging technology that combines high-throughput capabilities with cost efficiency. However, in LFOCM, the phase recovered by iterative phase retrieval techniques is generally wrapped into the range of -π to π, necessitating phase unwrapping to recover absolute phase distributions. Moreover, this unwrapping process is prone to errors, particularly in areas with large phase gradients or low spatial sampling, due to the absence of reliable initial guesses.
View Article and Find Full Text PDFIntensity diffraction tomography (IDT) is a label-free computational microscopy technique that infers 3D refractive index (RI) and absorption distributions of objects from intensity-only measurements. Nevertheless, the inherent coherent image formation model requires sequential intensity measurements under various plane wave illuminations, resulting in time-consuming data acquisition and low imaging speed. In this Letter, we propose differential phase contrast intensity diffraction tomography (DPC-IDT), which leverages partially coherent illumination to extend the accessible spectrum range, thereby achieving high-speed, motion-free 3D tomographic microscopy.
View Article and Find Full Text PDFBackground: Abnormalities of centrosomes, the major microtubular organizing centers of animal cells and regulators of cell cycle progression, usually accelerate tumor progression, but their prognostic value in lung adenocarcinoma (LUAD) remains insufficiently explored.
Methods: We collected centrosome genes from the literature and identified LUAD-specific centrosome-related genes (CRGs) using the single-sample gene set enrichment analysis (ssGSEA) algorithm and weighted gene co-expression network analysis (WGCNA). Univariate Cox was performed to screen prognostic CRGs.
Light field imaging can simultaneously record spatial and angular information of light signals to provide various computational imaging functions. However, traditional microlens array-based light field cameras usually suffer from a trade-off between spatial and angular resolutions. In contrast, focal scanning light field imaging (FSLFI) can digitally modulate an incident light field through an image stack captured at different focal planes and then utilize the transport-of-intensity property to computationally recover the full-resolution light field.
View Article and Find Full Text PDFBody mass index (BMI), type 1 diabetes (T1D), urolithiasis, and hydronephrosis are interrelated. Our aim was to analyze their causal relationships at the genetic level. Mendelian randomization is an instrumental variable analysis method that follows Mendel genetic law of random allocation of parental alleles to offspring.
View Article and Find Full Text PDFLens-free on-chip microscopy is a powerful and promising high-throughput computational microscopy technique due to its unique advantage of creating high-resolution images across the full field-of-view (FOV) of the imaging sensor. Nevertheless, most current lens-free microscopy methods have been designed for imaging only two-dimensional thin samples. Lens-free on-chip tomography (LFOCT) with a uniform resolution across the entire FOV and at a subpixel level remains a critical challenge.
View Article and Find Full Text PDFUnlabelled: Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging.
View Article and Find Full Text PDFTo compare the efficacy and safety of bedside ultrasound-guided and fluoroscopy-guided transvenous cardiac temporary pacing in the treatment of bradyarrhythmia in children. Children treated by temporary intravenous cardiac pacing from January 2016 to June 2023 in Hunan Provincial Children's Hospital were enrolled, and the characteristics and data of the cases were summarized. Patients were divided into bedside ultrasound-guided group (ultrasound group) and fluoroscopy-guided group (fluoroscopy group) according to the implantation guidance methods.
View Article and Find Full Text PDFThe development of health literacy in China is relatively slow, and there are fewer health literacy scales, which is difficult to measure. Therefore, this study aims to promote the development of health literacy in China through the translation and application of the European Health Literacy Survey Questionnaire (HLS-EU-Q47). The scale was translated into Chinese, back-translated, culturally adapted and finally subjected to psychometric evaluation.
View Article and Find Full Text PDFObjective: The aim of this study was to analyze the diagnosis, treatment, and follow-up of six cases of complex arrhythmias associated with gene mutations in children.
Method: A retrospective analysis was conducted on six children diagnosed with complex arrhythmias associated with gene mutations. The study included an analysis of the age of onset, initial symptoms, electrocardiographic characteristics, genetic results, treatment course, and follow-up outcomes.
Altern Ther Health Med
May 2024
Objective: To assess the usefulness of combining positron emission tomography/computed tomography (PET/CT) with lung cancer autoantibody detection in identifying and managing lung nodules.
Methods: The researchers identified 160 patients with pulmonary nodules admitted to their hospital between January 2018 and January 2021. These patients were designated as the experimental group.
A rapid method that uses super-resolution magnetic array data is proposed to localize an unknown number of magnets in a magnetic array. A magnetic data super-resolution (SR) neural network was developed to improve the resolution of a magnetic sensor array. The approximate 3D positions of multiple targets were then obtained based on the normalized source strength (NSS) and magnetic gradient tensor (MGT) inversion.
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
April 2024
Introduction: This study aimed to investigate the association of Nicotinamide phosphoribosyl transferase (NAMPT) rs61330082 polymorphism with co-morbid hypertension (HTN) and the progression of hypertension in Chinese patients with type 2 diabetes mellitus (T2DM).
Methods: A total of 453 T2DM patients were genotyped for the polymorphism of rs61330082 using SNP-scan high-throughput technology. These patients were divided into T2DM group (261 patients) and T2DM combined with hypertension group (T2MH, 192 patients).
Objective: This research intends to explore how variations in the SMAD4 gene impact papillary thyroid carcinoma (PTC) among patients in China.
Methods: The rs10502913 and rs12968012 polymorphisms were genotyped in 405 subjects using SNP-scan high-throughput technology. Differential mRNA expression of SMAD4 was analyzed using data from TCGA and GSE33630, and protein level expression differences were analyzed using immunohistochemistry.