Publications by authors named "Chao J Liu"

The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Comprehensive reconstruction of axonal tracts and small fascicles requires high-resolution technology beyond the ability of current imaging (e.g.

View Article and Find Full Text PDF

Significance: To enable non-destructive longitudinal assessment of drug agents in intact tumor tissue without the use of disruptive probes, we have designed a label-free method to quantify the health of individual tumor cells in excised tumor tissue using multiphoton fluorescence lifetime imaging microscopy (MP-FLIM).

Aim: Using murine tumor fragments which preserve the native tumor microenvironment, we seek to demonstrate signals generated by the intrinsically fluorescent metabolic co-factors nicotinamide adenine dinucleotide phosphate [NAD(P)H] and flavin adenine dinucleotide (FAD) correlate with irreversible cascades leading to cell death.

Approach: We use MP-FLIM of NAD(P)H and FAD on tissues and confirm viability using standard apoptosis and live/dead (Caspase 3/7 and propidium iodide, respectively) assays.

View Article and Find Full Text PDF

Assessing cell viability is important in many fields of research. Current optical methods to assess cell viability typically involve fluorescent dyes, which are often less reliable and have poor permeability in primary tissues. Dynamic optical coherence microscopy (dOCM) is an emerging tool that provides label-free contrast reflecting changes in cellular metabolism.

View Article and Find Full Text PDF

The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) provide important tools to directly quantify fiber orientation at micrometer resolution. However, brain imaging based on the optic axis by PS-OCT so far has been limited to two-dimensional in-plane orientation, preventing the comprehensive study of connectivity in 3D.

View Article and Find Full Text PDF

The importance of polarization-sensitive optical coherence tomography (PS-OCT) has been increasingly recognized in human brain imaging. Despite the recent progress of PS-OCT in revealing white matter architecture and orientation, quantification of fine-scale fiber tracts in the human brain cortex has been a challenging problem, due to a low birefringence in the gray matter. In this study, we investigated the effect of refractive index matching by 2,2'-thiodiethanol (TDE) immersion on the improvement of PS-OCT measurements in human brain tissue.

View Article and Find Full Text PDF

The mammalian neocortex exhibits a stereotypical laminar organization, with feedforward inputs arriving primarily into layer 4, local computations shaping response selectivity in layers 2/3, and outputs to other brain areas emanating via layers 2/3, 5 and 6. It cannot be assumed a priori that these signatures of laminar differences in neuronal circuitry are reflected in hemodynamic signals that form the basis of functional magnetic resonance imaging (fMRI). Indeed, optical imaging of single-vessel functional responses has highlighted the potential limits of using vascular signals as surrogates for mapping the selectivity of neural responses.

View Article and Find Full Text PDF

The surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. Volumetric analysis of cerebellar morphometry in magnetic resonance imaging studies suffers from insufficient resolution, and therefore has had limited impact on disease assessment. Automatic serial polarization-sensitive optical coherence tomography (as-PSOCT) is an emerging technique that offers the advantages of microscopic resolution and volumetric reconstruction of large-scale samples.

View Article and Find Full Text PDF

Three-photon excitation microscopy has double-to-triple the penetration depth in biological tissue over two-photon imaging and thus has the potential to revolutionize the visualization of biological processes . However, unlike the plug-and-play operation and performance of lasers used in two-photon imaging, three-photon microscopy presents new technological challenges that require a closer look at the fidelity of laser pulses. We implemented state-of-the-art pulse measurements and developed innovative techniques for examining the performance of lasers used in three-photon microscopy.

View Article and Find Full Text PDF

Multiphoton microscopy has emerged as the primary imaging tool for studying the structural and functional dynamics of neural circuits in brain tissue, which is highly scattering to light. Recently, three-photon microscopy has enabled high-resolution fluorescence imaging of neurons in deeper brain areas that lie beyond the reach of conventional two-photon microscopy, which is typically limited to ~ 450 µm. Three-photon imaging of neuronal calcium signals, through the genetically-encoded calcium indicator GCaMP6, has been used to successfully record neuronal activity in deeper neocortical layers and parts of the hippocampus in rodents.

View Article and Find Full Text PDF

Glioblastoma is a primary malignant brain tumor characterized by highly infiltrative glioma cells. Vasculature and white matter tracts are considered to be the preferred and fastest routes for glioma invasion through brain tissue. In this study, we systematically quantified the routes and motility of the U251 human glioblastoma cell line in mouse brain slices by multimodal imaging.

View Article and Find Full Text PDF

Optical coherence tomography provides volumetric reconstruction of brain structure with micrometer resolution. Gray matter and white matter can be highlighted using conventional and polarization-based contrasts; however, vasculature in fixed brain has not been investigated at large scale due to lack of intrinsic contrast. We present contrast enhancement to visualize the vasculature by perfusing titanium dioxide particles transcardially into the mouse vascular system.

View Article and Find Full Text PDF

We present phase-sensitive measurement of optical rotation using spectral-domain and time-domain low-coherence interferometry. The method utilizes two decorrelated polarization states and simultaneous dual-channel detection provided by polarization-maintaining fiber-based implementation. The sample is placed between polarization optics to control and switch left- and right-handed circular states that experience the sample in forward and backward directions.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 1 (SCA1) is a fatal inherited neurodegenerative disease. In this study, we demonstrate the label-free optical imaging methodology that can detect, with a high degree of sensitivity, discrete areas of degeneration in the cerebellum of the SCA1 mouse models. We used ATXN1[82Q] and ATXN1[30Q]-D776 mice in which the transgene is directed only to Purkinje cells.

View Article and Find Full Text PDF

The lumbar facet capsular ligament (FCL) primarily consists of aligned type I collagen fibers that are mainly oriented across the joint. The aim of this study was to characterize and incorporate in-plane local fiber structure into a multiscale finite element model to predict the mechanical response of the FCL during in vitro mechanical tests, accounting for the heterogeneity in different scales. Characterization was accomplished by using entire-domain polarization-sensitive optical coherence tomography to measure the fiber structure of cadaveric lumbar FCLs ([Formula: see text]).

View Article and Find Full Text PDF

To investigate the effects of different temperatures on the vernalization of leaf lettuce, and declare their type, two easy bolting leaf lettuce varieties of GB-30 and GB-31 were selected as material, which were treated by 4 ℃, 20 ℃ and 25 ℃ for 20 d respectively and afterwards treated by high temperature stress. The process of flower bud differentiation was observed by using paraffin section technology, and combined the condition of bolting and flowering to estimate whether or not it underwent vernalization, and defined its vernalization type. The results showed that, two varieties of GB-30 and GB-31 appeared bolting to different degrees at the 8 day under high temperature stress after temperature treatments in the early stage.

View Article and Find Full Text PDF

We present the visualization of the mouse cerebellum and adjacent brainstem using a serial optical coherence scanner, which integrates a vibratome slicer and polarization-sensitive optical coherence tomography for imaging. The scanner provides intrinsic optical contrasts to distinguish the cerebellar cortical layers and white matter. Images from serial scans reveal the large-scale anatomy in detail and map the nerve fiber pathways in the cerebellum and brainstem.

View Article and Find Full Text PDF

The optic axis of birefringent samples indicates the direction of optical anisotropy, which should be described in three-dimensional (3-D) space. We present a method to quantify the complete 3-D optic axis orientation calculated from in-plane optic axis measurements from a polarization-sensitive optical coherence tomography system. The in-plane axis orientations with different illumination angles allow the calculation of the necessary polar angle.

View Article and Find Full Text PDF

Two kinds of ordered ZnO/TiO2 heterostructures were fabricated via a facile approach. The architecture of the TiO2 substrate could be controlled by alternating the filling forms of the template, and the morphology of the secondary ZnO nanostructure could be further tuned by adjusting the parameters of the hydrothermal reaction. Then two different morphologies of ZnO/TiO2 heteroarchitectures with ZnO nanorods and nanoplates growing on TiO2 shells and bowls were successfully achieved, respectively.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3ngtqrtps0qj7kih0u7kp997ppcvc1bl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once