In this paper, we present a dataset to be used for the construction of the Voronoi diagram of 3D spherical balls (VD-B3). The dataset consists of sphere arrangements including general, anomaly, and extreme cases. The dataset also includes protein models downloaded from RCSB Protein Data Bank (PDB).
View Article and Find Full Text PDFThe deficiency of antigen-specific T cells and the induction of various treatment-induced immunosuppressions still limits the clinical benefit of cancer immunotherapy. Although the chemo-immunotherapy adjuvanted with Toll-like receptor 7/8 agonist (TLR 7/8a) induces immunogenic cell death (ICD) and in situ vaccination effect, indoleamine 2,3-dioxygenase (IDO) is also significantly increased in the tumor microenvironment (TME) and tumor-draining lymph node (TDLN), which offsets the activated antitumor immunity. To address the treatment-induced immunosuppression, an assemblable immune modulating suspension (AIMS) containing ICD inducer (paclitaxel) and supra-adjuvant (immune booster; R848 as a TLR 7/8a, immunosuppression reliever; epacadostat as an IDO inhibitor) is suggested and shows that it increases cytotoxic T lymphocytes and relieves the IDO-related immunosuppression (TGF-β, IL-10, myeloid-derived suppressor cells, and regulatory T cells) in both TME and TDLN, by the formation of in situ depot in tumor bed as well as by the efficient migration into TDLN.
View Article and Find Full Text PDFGold particles have been widely used in the treatment of prostate cancer due to their unique optical properties, such as their light-heat conversion in response to near-infrared radiation. Due to well-defined synthesis mechanisms and simple manufacturing methods, gold particles have been fabricated in various sizes and shapes. However, the low photothermal transduction efficiency in their present form is a major obstacle to practical and therapeutic uses of these particles.
View Article and Find Full Text PDFVoronoi diagrams are powerful for understanding spatial properties. However, few reports have been made for moving generators despite their important applications. We present a topology-oriented event-increment (TOI-E) algorithm for constructing a Voronoi diagram of moving circular disks in the plane over the time horizon [0, t).
View Article and Find Full Text PDFIn this paper, we present a benchmark dataset which can be used to evaluate the algorithms to construct the convex hull of 2D disks. The dataset contains disk arrangements including general and extremely biased cases, which are generated by a C++ program. The dataset is related to an article: "QuickhullDisk: A Faster Convex Hull Algorithm for Disks" in which the QuickhullDisk algorithm is presented and compared to the incremental algorithm which was reported by Devillers and Golin in 1995 [1].
View Article and Find Full Text PDFCurrent cancer immunotherapy based on immune checkpoint blockade (ICB) still suffers from low response rate and systemic toxicity. To overcome the limitation, a novel therapeutic platform that can revert nonimmunogenic tumors into immunogenic phenotype is highly required. Herein, a designer scaffold loaded with both immune nanoconverters encapsulated with resiquimod (iNCVs (R848)) and doxorubicin, which provides the polarization of immunosuppressive tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) into tumoricidal antigen-presenting cells (APCs), rather than depleting them, as well as in situ vaccination that can be generated in vivo without the need to previously analyze and sequence tumor antigens to favor neoantigen-specific T cell responses is suggested.
View Article and Find Full Text PDFThe low response rate of current cancer immunotherapy suggests the presence of few antigen-specific T cells and a high number of immunosuppressive factors in tumor microenvironment (TME). Here, we develop a syringeable immunomodulatory multidomain nanogel (iGel) that overcomes the limitation by reprogramming of the pro-tumoral TME to antitumoral immune niches. Local and extended release of immunomodulatory drugs from iGel deplete immunosuppressive cells, while inducing immunogenic cell death and increased immunogenicity.
View Article and Find Full Text PDFThe development of biomaterial-based immune niches that can modulate immunosuppressive factors in tumor microenvironment (TME) will be a key technology for improving current cancer immunotherapy. Here, implantable, engineered 3D porous scaffolds are designed to generate synergistic action between myeloid-derived suppressor cell (MDSC)-depleting agents, which can accommodate the establishment of a permissive immunogenic microenvironment to counteract tumor-induced immunosuppression, and cancer vaccines consisting of whole tumor lysates and nanogel-based adjuvants, which can generate tumor antigen-specific T cell responses. The local peritumoral implantation of the synthetic immune niche (termed immuneCare-DISC, iCD) as a postsurgical treatment in an advanced-stage primary 4T1 breast tumor model generates systemic antitumor immunity and prevents tumor recurrence at the surgical site as well as the migration of residual tumor cells into the lungs, resulting in 100% survival.
View Article and Find Full Text PDFIn this study, we suggest a designer vaccine adjuvant that can mimic the drainage of pathogens into lymph nodes and activate innate immune response in lymph nodes. By the amination of multivalent carboxyl groups in poly-(γ-glutamic acid) (γ-PGA) nanomicelles, the size was reduced for rapid entry into lymphatic vessels, and the immunologically inert nanomicelles were turned into potential activators of inflammasomes. Aminated γ-PGA nanomicelles (aPNMs) induced NLRP3 inflammasome activation and the subsequent release of proinflammatory IL-1β.
View Article and Find Full Text PDFEffective induction of an antigen-specific cytotoxic T lymphocyte (CTL) immune response is one of the key goals of cancer immunotherapy. We report the design and fabrication of polyethylenimine (PEI)-coated polymer nanoparticles (NPs) as efficient antigen-delivery carriers that can induce antigen cross-presentation and a strong CTL response. After synthesis of poly(d,l-lactide-co-glycolide) (PLGA) NPs containing ovalbumin (OVA) by the double-emulsion solvent-evaporation method, cationic-charged PLGA NPs were generated by coating them with PEI.
View Article and Find Full Text PDF