Publications by authors named "Chanton J"

Hydrothermal sediments host phylogenetically diverse and physiologically complex microbial communities. Previous studies of microbial community structure in hydrothermal sediments have typically used short-read sequencing approaches. To improve on these approaches, we use LoopSeq, a high-throughput synthetic long-read sequencing method that has yielded promising results in analyses of microbial ecosystems, such as the human gut microbiome.

View Article and Find Full Text PDF

Sphagnum-dominated bogs are climatically impactful systems that exhibit two puzzling characteristics: CO:CH ratios are greater than those predicted by electron balance models and C decomposition rates are enigmatically slow. We hypothesized that Maillard reactions partially explain both phenomena by increasing apparent CO production via eliminative decarboxylation and sequestering bioavailable nitrogen (N). We tested this hypothesis using incubations of sterilized Maillard reactants, and live and sterilized bog peat.

View Article and Find Full Text PDF

We employed two compelling and distinct methods, Fourier Transform Infrared Spectroscopy (FTIR) and Ramped Pyrolysis Oxidation (Ramped PyrOx), to examine the quality of organic matter (OM) stored in four peatlands located along a latitudinal gradient (Tropical (4˚N), Subtropical (27˚N), Boreal (48˚N), and Polar (68˚N)). FTIR was used to quantify the relative abundance of carbohydrates, a relatively labile compound class, and aromatics, which are more recalcitrant, in a sample set of four peat cores. These samples were then prepared using Ramped PyrOx, a second, independent method of determining OM quality that mimics the natural diagenetic maturation of OM that would take place over long timescales.

View Article and Find Full Text PDF

Methane mitigation is regarded as a critical strategy to combat the scale of global warming. Currently, about 40% of methane emissions originate from microbial sources, which is causing strategies to suppress methanogens, either through direct toxic effects or by diverting their substrates and energy, to gain traction. Problematically, current microbial methane mitigation knowledge derives from rumen studies and lacks detailed microbiome-centered insights, limiting translation across ecosystems.

View Article and Find Full Text PDF

With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along a permafrost thaw-induced saturation gradient in Stordalen Mire, a model Arctic peatland, we confirmed a negative relationship between phenol oxidase expression and saturation but failed to support other trends predicted by the enzyme latch.

View Article and Find Full Text PDF
Article Synopsis
  • Wetlands produce a lot of methane (a type of gas), but scientists don't fully understand how the tiny organisms in these areas work, which makes it hard to know how much methane will be released as the climate changes.
  • Researchers studied a special wetland in Sweden called Stordalen Mire and discovered that many microbes there can create methane using different sources, like certain chemicals found in the water.
  • This study shows that both methane-producing and methane-using bacteria are important for understanding how gases are emitted from wetlands, especially as permafrost (frozen ground) thaws due to climate change.
View Article and Find Full Text PDF

Microbial community changes in response to climate change drivers have the potential to alter the trajectory of important ecosystem functions. In this paper, we show that while microbial communities in peatland systems responded to manipulations of temperature and CO concentrations, these changes were not associated with similar responses in peat decomposition rates over 3 years. It is unclear however from our current studies whether this functional resiliency over 3 years will continue over the longer time scales relevant to peatland ecosystem functions.

View Article and Find Full Text PDF

Northern peatlands store approximately one-third of terrestrial soil carbon. Climate warming is expected to stimulate the microbially mediated degradation of peat soil organic matter (SOM), leading to increasing greenhouse gas (GHG; carbon dioxide, CO2; methane, CH4) production and emission. Porewater dissolved organic matter (DOM) plays a key role in SOM decomposition; however, the mechanisms controlling SOM decomposition and its response to warming remain unclear.

View Article and Find Full Text PDF

Peat mosses (Sphagnum spp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits. Sphagnum mosses harbor a diverse assemblage of microbial partners, including N -fixing (diazotrophic) and CH -oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen.

View Article and Find Full Text PDF

Methane (CH ) release to the atmosphere from thawing permafrost contributes significantly to global CH emissions. However, constraining the effects of thaw that control the production and emission of CH is needed to anticipate future Arctic emissions. Here are presented robust rate measurements of CH production and cycling in a region of rapidly degrading permafrost.

View Article and Find Full Text PDF

Peatlands historically have acted as a C sink because C-fixation rates exceeded the rate of heterotrophic decomposition. Under future warmer conditions predicted for higher latitudes, however, that balance may shift towards higher rates of heterotrophic respiration leading to the release of previously stored C as CO2 and CH4. The Spruce and Peatlands Response Under Changing Environments (SPRUCE) experiment is designed to test the response of peatlands to climate forcing using a series of warmed enclosures in combination with peat below-ground heating from 0 to +9°C above ambient conditions.

View Article and Find Full Text PDF

The mechanisms controlling the extraordinarily slow carbon (C) mineralization rates characteristic of Sphagnum-rich peatlands ("bogs") are not fully understood, despite decades of research on this topic. Soluble phenolic compounds have been invoked as potentially significant contributors to bog peat recalcitrance due to their affinity to slow microbial metabolism and cell growth. Despite this potentially significant role, the effects of soluble phenolic compounds on bog peat C mineralization remain unclear.

View Article and Find Full Text PDF

Peatlands are climate critical carbon (C) reservoirs that could become a C source under continued warming. A strong relationship between plant tissue chemistry and the soil organic matter (SOM) that fuels C gas emissions is inferred, but rarely examined at the molecular level. Here we compared Fourier transform infrared (FT-IR) spectroscopy measurements of solid phase functionalities in plants and SOM to ultra-high-resolution mass spectrometric analyses of plant and SOM water extracts across a palsa-bog-fen thaw and moisture gradient in an Arctic peatland.

View Article and Find Full Text PDF

Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO) and methane (CH) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems.

View Article and Find Full Text PDF

Background: Peatlands are expected to experience sustained yet fluctuating higher temperatures due to climate change, leading to increased microbial activity and greenhouse gas emissions. Despite mounting evidence for viral contributions to these processes in peatlands underlain with permafrost, little is known about viruses in other peatlands. More generally, soil viral biogeography and its potential drivers are poorly understood at both local and global scales.

View Article and Find Full Text PDF

In this study, a suite of complementary environmental geochemical analyses, including NMR and gas chromatography-mass spectrometry (GC-MS) analyses of central metabolites, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) of secondary metabolites, and lipidomics, was used to investigate the influence of organic matter (OM) quality on the heterotrophic microbial mechanisms controlling peatland CO, CH, and CO:CH porewater production ratios in response to climate warming. Our investigations leverage the Spruce and Peatland Responses under Changing Environments (SPRUCE) experiment, where air and peat warming were combined in a whole-ecosystem warming treatment. We hypothesized that warming would enhance the production of plant-derived metabolites, resulting in increased labile OM inputs to the surface peat, thereby enhancing microbial activity and greenhouse gas production.

View Article and Find Full Text PDF
Article Synopsis
  • Cold seeps and hydrothermal vents are unique seafloor ecosystems in Guaymas Basin, Gulf of California, that support different microbial communities based on their temperature and energy sources.
  • Sites in the basin exhibit notable geochemical and microbial differences, influenced by the hot, temperate, and cold conditions present at various locations, such as the southern axial valley and Octopus Mound.
  • The microbial communities consist of both autotrophic and heterotrophic microorganisms that play crucial roles in biogeochemical processes, including sulfur, nitrogen, and methane cycling, shaped by the thermal environment and energy derived from the sediments.
View Article and Find Full Text PDF

Mechanisms controlling CO2 and CH4 production in wetlands are central to understanding carbon cycling and greenhouse gas exchange. However, the volatility of these respiration products complicates quantifying their rates of production in the field. Attempts to circumvent the challenges through closed system incubations, from which gases cannot escape, have been used to investigate bulk in situ geochemistry.

View Article and Find Full Text PDF

Following the Deepwater Horizon oil spill of 2010, large amounts of biodegraded oil (petrocarbon) sank to the seafloor. Our objectives were to 1) determine post-spill isotopic values as the sediments approached a new baseline and 2) track the recovery of affected sediments. Sediment organic carbon δC and ΔC reached a post-spill baseline averaging -21.

View Article and Find Full Text PDF

Natural organic matter (NOM) is a complex mixture of biogenic molecules resulting from the deposition and transformation of plant and animal matter. It has long been recognized that NOM plays an important role in many geological, geochemical, and environmental processes. Of particular concern is the fate of NOM in response to a warming climate in environments that have historically sequestered carbon (e.

View Article and Find Full Text PDF

Peatlands contain one-third of the world's soil carbon (C). If destabilized, decomposition of this vast C bank could accelerate climate warming; however, the likelihood of this outcome remains unknown. Here, we examine peatland C stability through five years of whole-ecosystem warming and two years of elevated atmospheric carbon dioxide concentrations (eCO).

View Article and Find Full Text PDF

The southern Gulf of Mexico (sGoM) is home to an extensive oil recovery and development infrastructure. In addition, the basin harbors sites of submarine hydrocarbon seepage and receives terrestrial inputs from bordering rivers. We used stable carbon, nitrogen, and radiocarbon analyses of bulk sediment organic matter to define the current baseline isoscapes of surface sediments in the sGoM and determined which factors might influence them.

View Article and Find Full Text PDF
Article Synopsis
  • Warsaw grouper (Hyporthodus nigritus) is a deep-sea fish found in the western Atlantic, currently listed as a species of concern and near threatened due to limited knowledge on its life history, particularly in the northern Gulf of Mexico (nGOM).
  • Research established that nGOM Warsaw groupers can live up to 61 years, with age validation conducted using bomb 14C chronometry, confirming the accuracy of otolith aging methods.
  • The findings suggest that juvenile Warsaw groupers inhabit shallower waters, and the study indicates significant overfishing of the species in the nGOM, as most caught fish are under 10 years old compared to their longevity.
View Article and Find Full Text PDF