SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human and mouse in growth plate cartilage.
View Article and Find Full Text PDFMesenchymal stromal/progenitor cells (MSCs) are promising for cartilage cell-based therapies due to their chondrogenic differentiation capacity. However, MSCs can become senescent during expansion, a state characterized by stable cell cycle arrest, metabolic alterations, and substantial changes in the gene expression and secretory profile of the cell. In this study, we aimed to investigate how senescence and the senescence-associated secretory phenotype (SASP) affect chondrogenic differentiation of MSCs.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are promising cells to treat cartilage defects due to their chondrogenic differentiation potential. However, an inflammatory environment during differentiation, such as the presence of the cytokine TNFα, inhibits chondrogenesis and limits the clinical use of MSCs. On the other hand, it has been reported that exposure to TNFα during expansion can increase proliferation, migration, and the osteogenic capacity of MSCs and therefore can be beneficial for tissue regeneration.
View Article and Find Full Text PDFBone marrow derived mesenchymal stromal cells (BMSCs) are multipotent progenitors of particular interest for cell-based tissue engineering therapies. However, one disadvantage that limit their clinical use is their heterogeneity. In the last decades a great effort was made to select BMSC subpopulations based on cell surface markers, however there is still no general consensus on which markers to use to obtain the best BMSCs for tissue regeneration.
View Article and Find Full Text PDFThe structure-specific ERCC1-XPF endonuclease plays a key role in DNA damage excision by nucleotide excision repair (NER) and interstrand crosslink repair. Mutations in this complex can either cause xeroderma pigmentosum (XP) or XP combined with Cockayne syndrome (XPCS-complex) or Fanconi anemia. However, most patients carry compound heterozygous mutations, which confounds the dissection of the phenotypic consequences for each of the identified XPF alleles.
View Article and Find Full Text PDF