Publications by authors named "Chantal Planchamp"

The use of synthetic pesticides in agriculture is increasingly debated. However, few studies have compared the impact of synthetic pesticides and alternative biopesticides on non-target soil microorganisms playing a central role in soil functioning. We conducted a mesocosm experiment and used high-throughput amplicon sequencing to test the impact of a fungal biopesticide and a synthetic fungicide on the diversity, the taxonomic and functional compositions, and co-occurrence patterns of soil bacterial, fungal and protist communities.

View Article and Find Full Text PDF

Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet.

View Article and Find Full Text PDF

To obtain further insight into the intricate inter-play between maize (Zea mays) and the fungal pathogen Colletotrichum graminicola, the local and systemic molecular and chemical defence responses of maize leaves and roots were simultaneously investigated and compared. Similar gene expression and hormonal patterns were detected in both above- and below-ground organs; however, roots responded more rapidly and accumulated higher levels of defence-related hormones than leaves. Leaf and root infection with C.

View Article and Find Full Text PDF

Although plants possess an arsenal of constitutive defences such as structural barriers and preformed antimicrobial defences, many attackers are able to overcome the pre-existing defence layers. In response, a range of inducible plant defences is set up to battle these pathogens. These mechanisms, commonly integrated as induced resistance (IR), control pathogens and pests by the activation of specific defence pathways.

View Article and Find Full Text PDF

Determining links between plant defence strategies is important to understand plant evolution and to optimize crop breeding strategies. Although several examples of synergies and trade-offs between defence traits are known for plants that are under attack by multiple organisms, few studies have attempted to measure correlations of defensive strategies using specific single attackers. Such links are hard to detect in natural populations because they are inherently confounded by the evolutionary history of different ecotypes.

View Article and Find Full Text PDF

Plants activate local and systemic defence mechanisms upon exposure to stress. This innate immune response is partially regulated by plant hormones, and involves the accumulation of defensive metabolites. Although local defence reactions to herbivores are well studied, less is known about the impact of root herbivory on shoot defence.

View Article and Find Full Text PDF