Quantifying response to drug treatment in mouse models of human cancer is important for treatment development and assignment, yet remains a challenging task. To be able to translate the results of the experiments more readily, a preferred measure to quantify this response should take into account more of the available experimental data, including both tumor size over time and the variation among replicates. We propose a theoretically grounded measure, KuLGaP, to compute the difference between the treatment and control arms.
View Article and Find Full Text PDFReproducibility is essential to open science, as there is limited relevance for findings that can not be reproduced by independent research groups, regardless of its validity. It is therefore crucial for scientists to describe their experiments in sufficient detail so they can be reproduced, scrutinized, challenged, and built upon. However, the intrinsic complexity and continuous growth of biomedical data makes it increasingly difficult to process, analyze, and share with the community in a FAIR (findable, accessible, interoperable, and reusable) manner.
View Article and Find Full Text PDFGenomic instability affects the reproducibility of experiments that rely on cancer cell lines. However, measuring the genomic integrity of these cells throughout a study is a costly endeavor that is commonly forgone. Here, we validate the identity of cancer cell lines in three pharmacogenomic studies and screen for genetic drift within and between datasets.
View Article and Find Full Text PDFDrug-combination data portals have recently been introduced to mine huge amounts of pharmacological data with the aim of improving current chemotherapy strategies. However, these portals have only been investigated for isolated datasets, and molecular profiles of cancer cell lines are lacking. Here we developed a cloud-based pharmacogenomics portal called SYNERGxDB (http://SYNERGxDB.
View Article and Find Full Text PDFIn the past few decades, major initiatives have been launched around the world to address chemical safety testing. These efforts aim to innovate and improve the efficacy of existing methods with the long-term goal of developing new risk assessment paradigms. The transcriptomic and toxicological profiling of mammalian cells has resulted in the creation of multiple toxicogenomic datasets and corresponding tools for analysis.
View Article and Find Full Text PDFRecent cancer pharmacogenomic studies profiled large panels of cell lines against hundreds of approved drugs and experimental chemical compounds. The overarching goal of these screens is to measure sensitivity of cell lines to chemical perturbations, correlate these measures to genomic features, and thereby develop novel predictors of drug response. However, leveraging these valuable data is challenging due to the lack of standards for annotating cell lines and chemical compounds, and quantifying drug response.
View Article and Find Full Text PDFIdentification of drug targets and mechanism of action (MoA) for new and uncharacterized anticancer drugs is important for optimization of treatment efficacy. Current MoA prediction largely relies on prior information including side effects, therapeutic indication, and chemoinformatics. Such information is not transferable or applicable for newly identified, previously uncharacterized small molecules.
View Article and Find Full Text PDF