Publications by authors named "Chantal H M A Ramaekers"

The cellular response to DNA double strand breaks (DSBs) involves the ordered assembly of repair proteins at or near sites of damage. This process is mediated through post-translational protein modifications that include both phosphorylation and ubiquitylation. Recent data have demonstrated that recruitment of the repair proteins BRCA1, 53BP1, and RAD18 to ionizing irradiation (IR) induced DSBs is dependent on formation of non-canonical K63-linked polyubiquitin chains by the RNF8 and RNF168 ubiquitin ligases.

View Article and Find Full Text PDF

Background And Purpose: Hypoxia is a common feature of the microenvironment of solid tumors which has been shown to promote malignancy and poor patient outcome through multiple mechanisms. The association of hypoxia with more aggressive disease may be due in part to recently identified links between hypoxia and genetic instability. For example, hypoxia has been demonstrated to impede DNA repair by down-regulating the homologous recombination protein RAD51.

View Article and Find Full Text PDF

Background And Purpose: Human tumors are characterized by the presence of cells that experience periodic episodes of hypoxia followed by reoxygenation. These cells are exposed to reactive oxygen species (ROS) upon reoxygenation and require adaptation to this stress by lowering ROS production or enhancing ROS-clearance for their survival. We hypothesized that autophagy, a lysosomal degradation pathway, may be involved in reducing ROS during periodic hypoxia through removal of ROS producing species.

View Article and Find Full Text PDF

Background And Purpose: Carbonic anhydrase (CA) 9 expression is induced under hypoxic conditions. Recently we discovered that hypoxia-induced CA9 expression requires an intact unfolded protein response (UPR) pathway. The objective of this study was to evaluate the effect of reduced CA9 expression in UPR-impaired tumor cells on pH regulation and survival under acidic conditions.

View Article and Find Full Text PDF

Benzo[a]pyrene exerts its mutagenic effects via induction of benzo[a]pyrene-diol-epoxide (BPDE)-DNA adducts. Such helix-distorting adducts are not always successfully repaired prior to DNA replication, which may result in a blocked replication fork. To alleviate this stall, cells utilize DNA damage tolerance systems involving either error-free damage avoidance or error-prone translesion synthesis.

View Article and Find Full Text PDF