Publications by authors named "Chantal Grand-Maitre"

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters.

View Article and Find Full Text PDF
Article Synopsis
  • TRPA1 is a nonselective ion channel found in sensory neurons that plays a role in sensing various stimuli and is linked to conditions like neuropathic pain and respiratory diseases.* -
  • Researchers optimized a series of small molecule antagonists to inhibit TRPA1, discovering a new linker that enhances their effectiveness and bioavailability.* -
  • The effectiveness of one compound was tested in animal models, showing a significant reduction in inflammation, and its binding structure was elucidated using cryogenic electron microscopy.*
View Article and Find Full Text PDF

A class of substituted 1-thiazol-2-yl-N-3-methyl-1H-pyrozole-5-carboxylic acid derivatives was found to have potent anti-proliferative activity against a broad range of tumor cell lines. A compound from this class (14) was profiled across a broad panel of hematologic and solid tumor cancer cell lines demonstrating cell cycle arrest at the G0/G1 interphase and has potent anti-proliferative activity against a distinct and select set of cancer cell types with no observed effects on normal human cells. An example is the selective inhibition of human B-cell lymphoma cell line (BJAB).

View Article and Find Full Text PDF

We describe here the design, synthesis and biological evaluation of antiviral compounds acting against human rhinovirus (HRV). A series of aminothiazoles demonstrated pan-activity against the HRV genotypes screened and productive structure-activity relationships. A comprehensive investigational library was designed and performed allowing the identification of potent compounds with lower molecular weight and improved ADME profile.

View Article and Find Full Text PDF

The HIV-1 capsid (CA) protein, a domain of Gag, which participates in formation of both the mature and immature capsid, represents a potential target for anti-viral drug development. Characterization of hits obtained via high-throughput screening of an in vitro capsid assembly assay led to multiple compounds having this potential. We previously presented the characterization of two inhibitor series that bind the N-terminal domain of the capsid (CA(NTD)), at a site located at the bottom of its helical bundle, often referred to as the CAP-1 binding site.

View Article and Find Full Text PDF

The nucleocapsid (NC) protein is an essential factor with multiple functions within the human immunodeficiency virus type 1 (HIV-1) replication cycle. In this study, we describe the discovery of a novel series of inhibitors that targets HIV-1 NC protein by blocking its interaction with nucleic acids. This series was identified using a previously described capsid (CA) assembly assay, employing a recombinant HIV-1 CA-NC protein and immobilized TG-rich deoxyoligonucleotides.

View Article and Find Full Text PDF

The emergence of resistance to existing classes of antiretroviral drugs underlines the need to find novel human immunodeficiency virus (HIV)-1 targets for drug discovery. The viral capsid protein (CA) represents one such potential target. Recently, a series of benzodiazepine inhibitors was identified via high-throughput screening using an in vitro capsid assembly assay (CAA).

View Article and Find Full Text PDF

The discovery of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly is described. Synthesis of analogs of the 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione hit established structure-activity relationships. Replacement of the enamine functionality of the hit series with either an imidazole or a pyrazole ring led to compounds that inhibited both capsid assembly and reverse transcriptase.

View Article and Find Full Text PDF

The virally encoded NS3 protease is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. The design and synthesis of 15-membered ring beta-strand mimics which are capable of inhibiting the interactions between the HCV NS3 protease enzyme and its polyprotein substrate will be described. The binding interactions between a macrocyclic ligand and the enzyme were explored by NMR and molecular dynamics, and a model of the ligand/enzyme complex was developed.

View Article and Find Full Text PDF

From the discovery of competitive hexapeptide inhibitors, potent and selective HCV NS3 protease macrocyclic inhibitors have been identified. Structure-activity relationship studies were performed focusing on optimizing the N-terminal carbamate and the aromatic substituent on the (4R)-hydroxyproline moiety. Inhibitors meeting the potency criteria in the cell-based assay and with improved oral bioavailability in rats were identified.

View Article and Find Full Text PDF

The Boehringer Ingelheim compound collection was screened for inhibitors of the ATPase activity of human papillomavirus E1 helicase to develop antiviral agents that inhibit human papillomavirus (HPV) DNA replication. This screen led to the discovery of (biphenyl-4-sulfonyl)acetic acid 1, which inhibits the ATPase activity of HPV type 6 E1 helicase with a low micromolar IC(50) value. A hit-to-lead exercise rapidly converted 1 into a low nanomolar lead series.

View Article and Find Full Text PDF

A weak inhibitor means faster exchange! Since the methyl ketone MK2 is a weak noncovalent peptidyl inhibitor of the human cytomegalovirus protease, exchange between the free and enzyme-bound forms is rapid. This allows for the use of transferred NOE NMR methods and molecular modeling, which show that the bound conformation of MK2 is an extended peptide. This is confirmed by the results of an X-ray crystallographic analysis of a related enzyme-inhibitor complex.

View Article and Find Full Text PDF