Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.
View Article and Find Full Text PDFGene expression can be regulated at the level of initiation of protein biosynthesis via structural elements present at the 5' untranslated region of mRNAs. These folded mRNA segments may bind to the ribosome, thus blocking translation until the mRNA unfolds. Here, we report a series of cryo-electron microscopy snapshots of ribosomal complexes directly visualizing either the mRNA structure blocked by repressor protein S15 or the unfolded, active mRNA.
View Article and Find Full Text PDFRibosomal protein S15 is highly conserved among prokaryotes. It plays a pivotal role in the assembly of the central domain of the small ribosomal subunit and regulates its own expression by a feedback mechanism at the translational level. The protein recognizes two RNA targets (rRNA and mRNA) that share only partial similarity.
View Article and Find Full Text PDFMetal ions are essential for DNA polymerase and RNase H activities of HIV-1 reverse transcriptase (RT). RT studies are routinely performed at 6-8 mM Mg2+, despite the fact that the in vivo concentration might be as low as 0.2 mM.
View Article and Find Full Text PDFThe viral infectivity factor (Vif) protein of human immunodeficiency virus type 1 (HIV-1) is essential for viral replication in vivo. Packaging of Vif into viral particles is mediated by an interaction with viral genomic RNA and association with viral nucleoprotein complexes. Despite recent findings on the RNA-binding properties of Vif suggesting that Vif could be involved in retroviral assembly, no RNA sequence or structure specificity has been determined so far.
View Article and Find Full Text PDFThe ribosome of Thermus thermophilus was cocrystallized with initiator transfer RNA (tRNA) and a structured messenger RNA (mRNA) carrying a translational operator. The path of the mRNA was defined at 5.5 angstroms resolution by comparing it with either the crystal structure of the same ribosomal complex lacking mRNA or with an unstructured mRNA.
View Article and Find Full Text PDFStaphylococcus aureus RNAIII is one of the largest regulatory RNAs, which controls several virulence genes encoding exoproteins and cell-wall-associated proteins. One of the RNAIII effects is the repression of spa gene (coding for the surface protein A) expression. Here, we show that spa repression occurs not only at the transcriptional level but also by RNAIII-mediated inhibition of translation and degradation of the stable spa mRNA by the double-strand-specific endoribonuclease III (RNase III).
View Article and Find Full Text PDFWith the increasing interest of RNAs in regulating a range of cell biological processes, very little is known about the structure of RNAs in tissue culture cells. We focused on the 5'-untranslated region of the human immunodeficiency virus type 1 RNA genome, a highly conserved RNA region, which contains structural domains that regulate key steps in the viral replication cycle. Up until now, structural information only came from in vitro studies.
View Article and Find Full Text PDFHIV-1 reverse transcription is initiated from a tRNA(3)(Lys) molecule annealed to the viral RNA at the primer binding site (PBS), but the structure of the initiation complex of reverse transcription remains controversial. Here, we performed in situ structural probing, as well as in vitro structural and functional studies, of the initiation complexes formed by highly divergent isolates (MAL and NL4.3/HXB2).
View Article and Find Full Text PDFThe ribosomal protein S15 binds to 16S rRNA, during ribosome assembly, and to its own mRNA (rpsO mRNA), affecting autocontrol of its expression. In both cases, the RNA binding site is bipartite with a common subsite consisting of a G*U/G-C motif. The second subsite is located in a three-way junction in 16S rRNA and in the distal part of a stem forming a pseudoknot in Escherichia coli rpsO mRNA.
View Article and Find Full Text PDFFormation of the Bicoid morphogen gradient in early Drosophila embryos requires the pre-localization of bicoid mRNA to the anterior pole of the egg. The program of bcd mRNA localization involves multiples steps and proceeds from oogenesis until early embryogenesis. This process requires cis-elements in the 3' UTR of bcd mRNA and successive and/or concomitant critical protein interactions.
View Article and Find Full Text PDFDimerization of bcd mRNA was shown to be important for the formation of ribonucleoprotein particles and their localization in Drosophila embryo. The cis-element responsible for dimerization is localized in a stem-loop domain (domain III) containing two essential complementary 6-nucleotide sequences in a hairpin loop (LIIIb) and an interior loop (LIIIa). Such an RNA element can potentially generate single or double "hand-by-arm" interactions leading to open and closed complexes, respectively.
View Article and Find Full Text PDFReverse transcription of HIV-1 RNA is initiated from the 3' end of a tRNA3Lys molecule annealed to the primer binding site (PBS). An additional interaction between the anticodon loop of tRNA3Lys and a viral A-rich loop is required for efficient initiation of reverse transcription of the HIV-1 MAL isolate. In the HIV-1 HXB2 isolate, simultaneous mutations of the PBS and the A-rich loop (mutant His-AC), but not of the PBS alone (mutant His) allows the virus to stably utilize tRNA(His) as primer.
View Article and Find Full Text PDFSeveral viral proteins, including nucleocapsid protein, integrase, Vif, Tat, and Nef have been proposed to act as cofactors of HIV-1 reverse transcription. Using two viral RNA probes, one overlapping the primer-binding site (PBS) and the other representing the ribosomal frameshifting signal (FS) of HIV-1 RNA, we found that recombinant full-length Nef protein (NefLAI) increased the affinity of reverse transcriptase (RT) for RNA in vitro, and interacted directly with RT in protein co-precipitation assays. The effect on RT-RNA binding and the capacity of Nef to interact with RT was also observed with N-terminal deletion mutant NefDelta57 and NefSF2, although to a lesser level.
View Article and Find Full Text PDFThe loss of the fragile X mental retardation protein (FMRP) is responsible for the most common cause of inherited mental retardation called the fragile X syndrome. FMRP is suspected to participate in the synaptic plasticity of neurons by acting on posttranscriptional control of gene expression. FMRP is an RNA binding protein that associates with mRNAs together with other proteins to form large ribonucleoprotein complexes.
View Article and Find Full Text PDFHIV-1 utilizes cellular tRNA(3)(Lys) to prime the initiation of reverse transcription. The selective incorporation of cytoplasmic tRNA(3)(Lys) into HIV-1 particles was recently shown to involve the lysyl-tRNA synthetase, and hence, the encapsidated tRNA(3)(Lys) is likely to be aminoacylated. Here, we tested the effect of aminoacylation on the initiation of reverse transcription.
View Article and Find Full Text PDFThe 16S rRNA-binding ribosomal protein S15 is a key component in the assembly of the small ribosomal subunit in bacteria. We have shown that S15 from the extreme thermophile Thermus thermophilus represses the translation of its own mRNA in vitro, by interacting with the leader segment of its mRNA. The S15 mRNA-binding site was characterized by footprinting experiments, deletion analysis and site-directed mutagenesis.
View Article and Find Full Text PDFIn addition to its role in tRNA aminoacylation, Escherichia coli threonyl-tRNA synthetase is a regulatory protein which binds a site, called the operator, located in the leader of its own mRNA and inhibits translational initiation by competing with ribosome binding. This work shows that the two essential steps of regulation, operator recognition and inhibition of ribosome binding, are performed by different domains of the protein. The catalytic and the C-terminal domain of the protein are involved in binding the two anticodon arm-like structures in the operator whereas the N-terminal domain of the enzyme is responsible for the competition with the ribosome.
View Article and Find Full Text PDFReverse transcription of HIV-1 RNA is primed by a tRNA3(Lys) molecule bound at the primer binding site (PBS). Complex intermolecular interactions were proposed between tRNA3(Lys) and the RNA of the HIV-1 Mal isolate. Recently, an alternative interaction was proposed between the TPsiC stem of tRNA3(Lys) and a primer activation signal (PAS) of the Lai and Hxb2 RNAs, suggesting major structural variations in the reverse transcription complex of different HIV-1 strains.
View Article and Find Full Text PDFRNA loop-loop interactions are frequently used to trigger initial recognition between two RNA molecules. In this review, we present selected well-documented cases that illustrate the diversity of biological processes using RNA loop-loop recognition properties. The first one is related to natural antisense RNAs that play a variety of regulatory functions in bacteria and their extra-chromosomal elements.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV) genomic RNA is packaged into virions as a dimer. The first step of dimerization is the formation of a kissing-loop complex at the so-called dimerization initiation site (DIS). We found an unexpected and fortuitous resemblance between the HIV-1 DIS kissing-loop complex and the eubacterial 16 S ribosomal aminoacyl-tRNA site (A site), which is the target of aminoglycoside antibiotics.
View Article and Find Full Text PDFInitiation of human immunodeficiency virus type 1 (HIV-1) reverse transcription requires specific recognition between the viral RNA (vRNA), tRNA(3)(Lys), which acts as primer, and reverse transcriptase (RT). The specificity of this ternary complex is mediated by intricate interactions between the HIV-1 RNA and tRNA(3)(Lys). Here, we compared the relative importance of the secondary structure elements of this complex in the initiation process.
View Article and Find Full Text PDFThe 3'-terminal ends of both the positive and negative strands of the hepatitis C virus (HCV) RNA, the latter being the replicative intermediate, are most likely the initiation sites for replication by the viral RNA-dependent RNA polymerase, NS5B. The structural features of the very conserved 3' plus [(+)] strand untranslated region [3' (+) UTR] are well established (K. J.
View Article and Find Full Text PDFEscherichia coli ribosomal protein S15 recognizes two RNA targets: a three-way junction in 16S rRNA and a pseudoknot structure on its own mRNA. Binding to mRNA occurs when S15 is expressed in excess over its rRNA target, resulting in an inhibition of translation start. The sole apparent similarity between the rRNA and mRNA targets is the presence of a G-U/G-C motif that contributes only modestly to rRNA binding but is essential for mRNA.
View Article and Find Full Text PDFEscherichia coli threonyl-tRNA synthetase (ThrRS) represses the translation of its own messenger RNA by binding to an operator located upstream of the initiation codon. The crystal structure of the complex between the core of ThrRS and the essential domain of the operator shows that the mRNA uses the recognition mode of the tRNA anticodon loop to initiate binding. The final positioning of the operator, upon which the control mechanism is based, relies on a characteristic RNA motif adapted to the enzyme surface.
View Article and Find Full Text PDF