Publications by authors named "Chantal Darquenne"

Introduction: The deposition of inhaled medications is the first step in the pulmonary pharmacokinetic process to produce a therapeutic response. Not only lung dose but more importantly the distribution of deposited drug in the different regions of the lung determines local bioavailability, efficacy, and clinical safety. Assessing aerosol deposition patterns has been the focus of intense research that combines the fields of physics, radiology, physiology, and biology.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is common in people living with human immunodeficiency virus (HIV) (PLWH), but the underlying mechanisms are unclear. With improved long-term survival among PLWH, aging and obesity are increasingly prevalent in this population. These are also strong risk factors for the development of obstructive sleep apnea.

View Article and Find Full Text PDF

Nuclear magnetic resonance imaging (MRI) uses non-ionizing radiation and offers a host of contrast mechanisms with the potential to quantify aerosol deposition. This chapter introduces the physics of MRI, its use in lung imaging, and more specifically, the methods that are used for the detection of regional distributions of inhaled particles. The most common implementation of MRI is based on imaging of hydrogen atoms (H) in water.

View Article and Find Full Text PDF

We describe ongoing efforts to better understand the interaction of spoken languages and their physical environments. We begin by briefly surveying research suggesting that languages evolve in ways that are influenced by the physical characteristics of their environments, however the primary focus is on the converse issue: how speech affects the physical environment. We discuss the speech-based production of airflow and aerosol particles that are buoyant in ambient air, based on some of the results in the literature.

View Article and Find Full Text PDF

The extrathoracic oral airway is not only a major mechanical barrier for pharmaceutical aerosols to reach the lung but also a major source of variability in lung deposition. Using computational fluid dynamics, deposition of 1−30 µm particles was predicted in 11 CT-based models of the oral airways of adults. Simulations were performed for mouth breathing during both inspiration and expiration at two steady-state flow rates representative of resting/nebulizer use (18 L/min) and of dry powder inhaler (DPI) use (45 L/min).

View Article and Find Full Text PDF

The recent COVID-19 pandemic has propelled the field of aerosol science to the forefront, particularly the central role of virus-laden respiratory droplets and aerosols. The pandemic has also highlighted the critical need, and value for, (that inform policymakers to develop public health responses) (that inform the public and health care providers how individuals develop respiratory infections). Here, we review existing data and models of generation of respiratory droplets and aerosols, their exhalation and inhalation, and the fate of infectious droplet transport and deposition throughout the respiratory tract.

View Article and Find Full Text PDF

Multiple breath washout (MBW) testing is increasingly used as a physiological measurement in the clinic, due in part to the availability of commercial equipment and reference values for MBW indices. Commercial N washout devices are usually based on indirect measurement of N concentration (), by directly measuring either molar mass and O and CO, or molar mass and CO. We aim to elucidate the role of two potential pitfalls associated with N-MBW testing that could override its physiological content: indirect N measurement and blood-solubility of N.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is highly prevalent in people living with human immunodeficiency virus (HIV) (PLWH), and it might contribute to frequently reported symptoms and comorbidities. Traditional risk factors for OSA are often absent in PLWH, suggesting that HIV or HIV medications might predispose to OSA. Therefore, we measured the anatomical and nonanatomical traits important for OSA pathogenesis in those with and without HIV.

View Article and Find Full Text PDF

Despite being an important patient group, adult cystic fibrosis patients with an FEV below 40%predicted have been excluded from clinical trials with elexacaftor/tezacaftor/ivacaftor. We conducted a real-life 3 months follow-up study in 14 adult CF patients (median FEV 34%predicted) demonstrating significant treatment effects in terms of FEV (an increase of 12%predicted at 4 weeks, remaining stable thereafter). Corresponding decreases in lung clearance index LCI (by 31%predicted, down from baseline 247%predicted) and ventilation heterogeneity in the acinar compartment (Sacin) (by 411%predicted, down from baseline 798%predicted) suggest a distinct peripheral lung effect.

View Article and Find Full Text PDF

National and international guidelines recommend droplet/airborne transmission and contact precautions for those caring for coronavirus disease 2019 (COVID-19) patients in ambulatory and acute care settings. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, an acute respiratory infectious agent, is primarily transmitted between people through respiratory droplets and contact routes. A recognized key to transmission of COVID-19, and droplet infections generally, is the dispersion of bioaerosols from the patient.

View Article and Find Full Text PDF
Particle Size Distributions.

J Aerosol Med Pulm Drug Deliv

August 2020

The distribution of particles sizes within an aerosol is essential information for understanding the behavior of that aerosol. The number of particles within certain size ranges is given by distributions specified by a count distribution if referring to number of particles, or a mass distribution if referring to particle mass. The cumulative number, or mass, of particles less than a certain diameter is determined by integrating the relevant distribution, which allows definition of median diameters.

View Article and Find Full Text PDF
Deposition Mechanisms.

J Aerosol Med Pulm Drug Deliv

August 2020

The success of inhalation therapy is not only dependent upon the pharmacology of the drugs being inhaled but also upon the site and extent of deposition in the respiratory tract. Similarly, the toxicity of environmental and industrial particulate matter is affected not only by the nature of the dust but also by the amount and spatial distribution of deposited particles in the lung. Aerosol deposition is primarily governed by the mechanisms of inertial impaction, gravitational sedimentation, Brownian diffusion, and, to a lesser extent, by turbulence, electrostatic precipitation, and interception.

View Article and Find Full Text PDF

: Pulmonary drug delivery is a complex field of research combining physics which drive aerosol transport and deposition and biology which underpins efficacy and toxicity of inhaled drugs. A myriad of preclinical methods, ranging from to and , can be implemented.: The present review covers mathematical and computational fluid dynamics modelization of aerosol deposition, cascade impactor technology to estimated drug delivery and deposition, advanced cell culture methods and associated aerosol exposure, lung-on-chip technology, modeling, inhaled drug delivery, lung imaging, and longitudinal pharmacokinetic analysis.

View Article and Find Full Text PDF

While it is recognized that peripheral lung structure and ventilation heterogeneity change with age, the effects of age on aerosol deposition in the healthy adult lung is largely unknown. A series of aerosol bolus inhalations were repeatedly performed in four healthy subjects over a period of 19 years (years = 0, 9, 15 and 19). For each series, a bolus of 1 μm particles was inhaled at penetration volumes () ranging from 200 to 1200 mL.

View Article and Find Full Text PDF

Specific ventilation imaging (SVI) is a functional magnetic resonance imaging technique capable of quantifying specific ventilation - the ratio of the fresh gas entering a lung region divided by the region's end-expiratory volume - in the human lung, using only inhaled oxygen as a contrast agent. Regional quantification of specific ventilation has the potential to help identify areas of pathologic lung function. Oxygen in solution in tissue shortens the tissue's longitudinal relaxation time (T1), and thus a change in tissue oxygenation can be detected as a change in T1-weighted signal with an inversion recovery acquired image.

View Article and Find Full Text PDF

We used magnetic resonance imaging (MRI) to quantify change in upper airway dimension during tidal breathing in subjects with obstructive sleep apnea (OSA, N = 7) and BMI-matched healthy controls (N = 7) during both wakefulness and natural sleep. Dynamic MR images of the upper airway were obtained on a 1.5 T MR scanner in contiguous 7.

View Article and Find Full Text PDF

The 21st Congress for the International Society for Aerosols in Medicine included, for the first time, a session on Pulmonary Delivery of Therapeutic and Diagnostic Gases. The rationale for such a session within ISAM is that the pulmonary delivery of gaseous drugs in many cases targets the same therapeutic areas as aerosol drug delivery, and is in many scientific and technical aspects similar to aerosol drug delivery. This article serves as a report on the recent ISAM congress session providing a synopsis of each of the presentations.

View Article and Find Full Text PDF

Multiple breath washout (MBW) and oxygen-enhanced MRI techniques use acute exposure to 100% oxygen to measure ventilation heterogeneity. Implicit is the assumption that breathing 100% oxygen does not induce changes in ventilation heterogeneity; however, this is untested. We hypothesized that ventilation heterogeneity decreases with increasing inspired oxygen concentration in healthy subjects.

View Article and Find Full Text PDF

Background: To quantify the relationship between regional lung ventilation and coarse aerosol deposition in the supine healthy human lung, we used oxygen-enhanced magnetic resonance imaging and planar gamma scintigraphy in seven subjects.

Methods: Regional ventilation was measured in the supine posture in a 15 mm sagittal slice of the right lung. Deposition was measured by using planar gamma scintigraphy (coronal scans, 40 cm FOV) immediately postdeposition, 1 hour 30 minutes and 22 hours after deposition of Tc-labeled particles (4.

View Article and Find Full Text PDF

High-altitude pulmonary edema (HAPE) is a potentially fatal condition affecting high-altitude sojourners. The biggest predictor of HAPE development is a history of prior HAPE. Magnetic resonance imaging (MRI) shows that HAPE-susceptible (with a history of HAPE), but not HAPE-resistant (with a history of repeated ascents without illness) individuals develop greater heterogeneity of regional pulmonary perfusion breathing hypoxic gas (O = 12.

View Article and Find Full Text PDF

Despite substantial development of sophisticated subject-specific computational models of aerosol transport and deposition in human lungs, experimental validation of predictions from these new models is sparse. We collected aerosol retention and exhalation profiles in seven healthy volunteers and six subjects with mild-to-moderate COPD (FEV = 50-80%predicted) in the supine posture. Total deposition was measured during continuous breathing of 1 and 2.

View Article and Find Full Text PDF

After the presentation of 60 papers at the conference "Advancing Aerosol Dosimetry Research" (October 24-25, 2014 in Irvine, CA, USA), attendees submitted written descriptions of needed research. About 40 research needs were submitted. The suggestions fell into six broad categories: 1) Access to detailed anatomic data; 2) Access to subject-specific aerosol deposition datasets; 3) Improving current inhaled aerosol deposition models; 4) Some current experimental data needs and hot topics; 5) Linking exposure and deposition modeling to health endpoints; and 6) Developing guidelines for appropriate validation of dosimetry and risk assessment models.

View Article and Find Full Text PDF

Translational investigations in cystic fibrosis (CF) have a need for improved quantitative and longitudinal measures of disease status. To establish a non-invasive quantitative MRI technique to monitor lung health in patients with CF and correlate MR metrics with airway physiology as measured by multiple breath washout (MBW). Data were collected in 12 CF patients and 12 healthy controls.

View Article and Find Full Text PDF