Overconsumption of high-fat and cholesterol-containing diets is detrimental for metabolism and mitochondrial function, causes inflammatory responses and impairs insulin action in peripheral tissues. Dietary fatty acids can enter the brain to mediate the nutritional status, but also to influence neuronal homeostasis. Yet, it is unclear whether cholesterol-containing high-fat diets (HFDs) with different combinations of fatty acids exert metabolic stress and impact mitochondrial function in the brain.
View Article and Find Full Text PDFInsulin receptor signaling is crucial for white adipose tissue (WAT) function. Consequently, lack of insulin receptor (IR) in WAT results in a diabetes-like phenotype. Yet, causes for IR downregulation in WAT of patients with diabetes are not well understood.
View Article and Find Full Text PDFThe prevalence of obesity and its co-morbidities such as insulin resistance and type 2 diabetes are tightly linked to increased ingestion of palatable fat enriched food. Thus, it seems intuitive that the brain senses elevated amounts of fatty acids (FAs) and affects adaptive metabolic response, which is connected to mitochondrial function and insulin signaling. This review will address the effect of dietary FAs on brain insulin and mitochondrial function with a special emphasis on the impact of different FAs on brain function and metabolism.
View Article and Find Full Text PDFObjective: Insulin action in the brain controls metabolism and brain function, which is linked to proper mitochondrial function. Conversely, brain insulin resistance associates with mitochondrial stress and metabolic and neurodegenerative diseases. In the present study, we aimed to decipher the impact of hypothalamic insulin action on mitochondrial stress responses, function and metabolism.
View Article and Find Full Text PDF