Publications by authors named "Chantal Brees"

Accumulating evidence indicates that peroxisome functioning, catalase localization, and cellular oxidative balance are intimately interconnected. Nevertheless, it remains largely unclear why modest increases in the cellular redox state especially interfere with the subcellular localization of catalase, the most abundant peroxisomal antioxidant enzyme. This study aimed at gaining more insight into this phenomenon.

View Article and Find Full Text PDF

Aims: Peroxisomes are ubiquitous, single-membrane-bounded organelles that contain considerable amounts of enzymes involved in the production or breakdown of hydrogen peroxide (HO), a key signaling molecule in multiple biological processes and disease states. Despite this, the role of this organelle in cross-compartmental HO signaling remains largely unclear, mainly because of the difficulty to modulate peroxisomal HO production in a selective manner. This study aimed at establishing and validating a cellular model suitable to decipher the complex signaling processes associated with peroxisomal HO release.

View Article and Find Full Text PDF

Many biological processes and cell fate decisions are modulated by changes in redox environment. To gain insight into how subcellular compartmentalization of reactive oxygen species (ROS) formation contributes to (site-specific) redox signaling and oxidative stress responses, it is critical to have access to tools that allow tight spatial and temporal control of ROS production. Over the past decade, the use of genetically encoded photosensitizers has attracted growing interest of researchers because these proteins can be easily targeted to various subcellular compartments and allow for controlled release of ROS when excited by light.

View Article and Find Full Text PDF

Peroxisomes are ubiquitous cell organelles essential for human health. To maintain a healthy cellular environment, dysfunctional and superfluous peroxisomes need to be selectively removed. Although emerging evidence suggests that peroxisomes are mainly degraded by pexophagy, little is known about the triggers and molecular mechanisms underlying this process in mammalian cells.

View Article and Find Full Text PDF

Electroporation is one of the most efficient nonviral methods for transferring exogenous DNA into mammalian cells. However, the relatively high costs of electroporation kits and reagents temper the routine use of this fast and easy to perform technique in many laboratories. Several years ago, a new flexible and easy to operate electroporation device was launched under the name Neon Transfection System.

View Article and Find Full Text PDF

Peroxisome maintenance depends on the import of nuclear-encoded proteins from the cytosol. The vast majority of these proteins is destined for the peroxisomal lumen and contains a C-terminal peroxisomal targeting signal, called PTS1. This targeting signal is recognized in the cytosol by the receptor PEX5.

View Article and Find Full Text PDF

Many cellular processes are driven by spatially and temporally regulated redox-dependent signaling events. Although mounting evidence indicates that organelles such as the endoplasmic reticulum and mitochondria can function as signaling platforms for oxidative stress-regulated pathways, little is known about the role of peroxisomes in these processes. In this study, we employ targeted variants of the genetically encoded photosensitizer KillerRed to gain a better insight into the interplay between peroxisomes and cellular oxidative stress.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are at once unsought by-products of metabolism and critical regulators of multiple intracellular signaling cascades. In nonphotosynthetic eukaryotic cells, mitochondria are well-investigated major sites of ROS generation and related signal initiation. Peroxisomes are also capable of ROS generation, but their contribution to cellular oxidation-reduction (redox) balance and signaling events are far less well understood.

View Article and Find Full Text PDF

Despite the identification and characterization of various proteins that are essential for peroxisome biogenesis, the origin and the turnover of peroxisomes are still unresolved critical issues. In this study, we used the HaloTag technology as a new approach to examine peroxisome dynamics in cultured mammalian cells. This technology is based on the formation of a covalent bond between the HaloTag protein--a mutated bacterial dehalogenase which is fused to the protein of interest--and a synthetic haloalkane ligand that contains a fluorophore or affinity tag.

View Article and Find Full Text PDF

Background: Peroxisomes execute diverse and vital functions in virtually every eukaryote. New peroxisomes form by budding from pre-existing organelles or de novo by vesiculation of the ER. It has been suggested that ADP-ribosylation factors and COPI coatomer complexes are involved in these processes.

View Article and Find Full Text PDF

Tetratricopeptide (TPR)-domain proteins are involved in various cellular processes. The TPR domain is known to be responsible for interaction with other proteins commonly recognizing sequence motifs at the C-termini. One such TPR-protein, TRIP8b, was originally identified in rat as an interaction partner of Rab8b, and its human orthologue as a protein related to the peroxisomal targeting signal 1 (PTS1) receptor Pex5p (Pex5Rp).

View Article and Find Full Text PDF

Trypanosomes contain unique peroxisome-like organelles designated glycosomes which sequester enzymes involved in a variety of metabolic processes including glycolysis. We identified three ABC transporters associated with the glycosomal membrane of Trypanosoma brucei. They were designated GAT1-3 for Glycosomal ABC Transporters.

View Article and Find Full Text PDF

Pex19p, a primarily cytosolic protein, is essential for the biogenesis of numerous peroxisomal membrane proteins (PMPs); however, its precise function is unclear. Pex19p might function as a PMP-specific chaperone, a cycling PMP-receptor protein, a PMP membrane insertion factor, or an association/dissociation factor of membrane-associated protein complexes. Alternatively, Pex19p might act as a multifunctional peroxin and participate in a number of these activities.

View Article and Find Full Text PDF

Human Pex19p binds a broad spectrum of peroxisomal membrane proteins (PMPs). It has been proposed that this peroxin may: (i) act as a cycling PMP receptor protein, (ii) facilitate the insertion of newly synthesized PMPs into the peroxisomal membrane, or (iii) function as a chaperone to associate and/or dissociate complexes comprising integral PMPs already in the peroxisomal membrane. We previously demonstrated that human Pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences.

View Article and Find Full Text PDF

In recent years, substantial progress has been made in the identification of proteins involved in peroxisome biogenesis. However, with the exception of the peroxisome-targeting signal receptors and the receptor docking proteins, the function of most of these proteins, called peroxins, remains largely unknown. One step toward elucidating the function of a protein is to identify its interacting partners.

View Article and Find Full Text PDF