Publications by authors named "Chantal Bader"

Article Synopsis
  • The development of antiviral drugs for SARS-CoV-2 is essential due to limited treatment options and the possibility of reinfection after vaccination.
  • Two key viral targets for drug development are the 3'-5' exoribonuclease (ExoN) and the 2'-O-methyltransferase (2'-O-MTase), which are crucial for the virus's survival.
  • The study utilizes target-directed dynamic combinatorial chemistry (tdDCC) to find compounds that inhibit the interactions of essential viral proteins, resulting in a new class of inhibitors that show antiviral activity against coronaviruses.
View Article and Find Full Text PDF

Specialized or secondary metabolites are small molecules of biological origin, often showing potent biological activities with applications in agriculture, engineering and medicine. Usually, the biosynthesis of these natural products is governed by sets of co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To share information about BGCs in a standardized and machine-readable way, the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated in 2015.

View Article and Find Full Text PDF

DNA polymerase III sliding clamp (DnaN) was recently validated as a new anti-tuberculosis target employing griselimycins. Three (2 S,4 R)-4-methylproline moieties of methylgriselimycin play significant roles in target binding and metabolic stability. Here, we identify the mycoplanecin biosynthetic gene cluster by genome mining using bait genes from the 4-methylproline pathway.

View Article and Find Full Text PDF

Actinobacteria, the bacterial phylum most renowned for natural product discovery, has been established as a valuable source for drug discovery and biotechnology but is underrepresented within accessible genome and strain collections. Herein, we introduce the Natural Products Discovery Center (NPDC), featuring 122,449 strains assembled over eight decades, the genomes of the first 8490 NPDC strains (7142 Actinobacteria), and the online NPDC Portal making both strains and genomes publicly available. A comparative survey of RefSeq and NPDC Actinobacteria highlights the taxonomic and biosynthetic diversity within the NPDC collection, including three new genera, hundreds of new species, and ~7000 new gene cluster families.

View Article and Find Full Text PDF

A continued rise of antibiotic resistance and shortages of effective antibiotics necessitate the discovery and development of new antibiotics with novel modes of action (MoAs) against resistant pathogens. While natural products remain the best resource for antibiotic discovery, their exploration faces many challenges, including (i) unknown MoAs, (ii) high rediscovery rates, (iii) tedious isolation and structure elucidation, and (iv) insufficient production for further development. We have identified recent innovations in screening methods, microbiology, bioinformatics, and metabolomics technologies, as well as natural product-inspired synthesis and synthetic biology, that have contributed to new natural product antibiotics in the past two years.

View Article and Find Full Text PDF

In this study, an unprecedented myxobacterial siderophore termed sorangibactin was discovered by heterologous expression of a coelibactin-like nonribosomal peptide synthetase (NRPS) gene cluster from the strain MSr11367 in the host DK1622. De novo structure elucidation uncovered a linear polycyclic structure consisting of an N-terminal phenol group, an oxazole, tandem -methyl-thiazolidines, and an unusual C-terminal γ-thiolactone moiety. Except for the unprecedented oxazoline dehydrogenation to form an oxazole, which we show to be catalyzed by a cytochrome P450-dependent enzyme, other tailoring steps were found necessary for efficient downstream processing.

View Article and Find Full Text PDF

Ultrahigh resolution mass spectrometry (UHR-MS) coupled with direct infusion (DI) electrospray ionization offers a fast solution for accurate untargeted profiling. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers have been shown to produce a wealth of insights into complex chemical systems because they enable unambiguous molecular formula assignment even if the vast majority of signals is of unknown identity. Interlaboratory comparisons are required to apply this type of instrumentation in quality control (for food industry or pharmaceuticals), large-scale environmental studies, or clinical diagnostics.

View Article and Find Full Text PDF

Over recent decades, the pipeline of antibiotics acting against Gram-negative bacteria is running dry, as most discovered candidate antibiotics suffer from insufficient potency, pharmacokinetic properties, or toxicity. The darobactins, a promising new small peptide class of drug candidates, bind to novel antibiotic target BamA, an outer membrane protein. Previously, we reported that biosynthetic engineering in a heterologous host generated novel darobactins with enhanced antibacterial activity.

View Article and Find Full Text PDF

To develop novel antibiotics, targeting the early steps of cell wall peptidoglycan biosynthesis seems to be a promising strategy that is still underutilized. MurA, the first enzyme in this pathway, is targeted by the clinically used irreversible inhibitor fosfomycin. However, mutations in its binding site can cause bacterial resistance.

View Article and Find Full Text PDF

During our search for novel myxobacterial natural products, we discovered the thiamyxins: thiazole- and thiazoline-rich non-ribosomal peptide-polyketide hybrids with potent antiviral activity. We isolated four congeners of this unprecedented natural product family with the non-cyclized thiamyxin D fused to a glycerol unit at the C-terminus. Alongside their structure elucidation, we present a concise biosynthesis model based on biosynthetic gene cluster analysis and isotopically labelled precursor feeding.

View Article and Find Full Text PDF

Structure elucidation and total synthesis of five unprecedented terpenoid-alkaloids, the sandacrabins, are reported, alongside with the first description of their producing organism Sandaracinus defensii MSr10575, which expands the Sandaracineae family by only its second member. The genome sequence of S. defensii as presented in this study was utilized to identify enzymes responsible for sandacrabin formation, whereby dimethylbenzimidazol, deriving from cobalamin biosynthesis, was identified as key intermediate.

View Article and Find Full Text PDF

The development of new antibiotics is imperative to fight increasing mortality rates connected to infections caused by multidrug-resistant (MDR) bacteria. In this context, Gram-negative pathogens listed in the WHO priority list are particularly problematic. Darobactin is a ribosomally produced and post-translationally modified bicyclic heptapeptide antibiotic selectively killing Gram-negative bacteria by targeting the outer membrane protein BamA.

View Article and Find Full Text PDF

Genomic information from various magnetotactic bacteria suggested that besides their common ability to form magnetosomes, they potentially also represent a source of bioactive natural products. By using targeted deletion and transcriptional activation, we connected a large biosynthetic gene cluster (BGC) of the -acyltransferase polyketide synthase (-AT PKS) type to the biosynthesis of a novel polyketide in the alphaproteobacterium Structure elucidation by mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) revealed that this secondary metabolite resembles sesbanimides, which were very recently reported from other taxa. However, sesbanimide R exhibits an additional arginine moiety the presence of which reconciles inconsistencies in the previously proposed sesbanimide biosynthesis pathway observed when comparing the chemical structure and the potential biochemistry encoded in the BGC.

View Article and Find Full Text PDF

Antibiotic development based on natural products has faced a long lasting decline since the 1970s, while both the speed and the extent of antimicrobial resistance (AMR) development have been severely underestimated. The discovery of antimicrobial natural products of bacterial and fungal origin featuring new chemistry and previously unknown mode of actions is increasingly challenged by rediscovery issues. Natural products that are abundantly produced by the corresponding wild type organisms often featuring strong UV signals have been extensively characterized, especially the ones produced by extensively screened microbial genera such as streptomycetes.

View Article and Find Full Text PDF

Chemical decomposition of DMSO stock solutions is a common incident that can mislead biological screening campaigns. Here, we share our case study of 2-aminothiazole 1, originating from an antimalarial class that undergoes chemical decomposition in DMSO at room temperature. As previously measured biological activities observed against Plasmodium falciparum NF54 and for the target enzyme PfIspE were not reproducible for a fresh batch, we tackled the challenge to understand where the activity originated from.

View Article and Find Full Text PDF

Herein, we describe a new plasmid found in Sandaracinus sp. MSr10575 named pSa001 spanning 209.7 kbp that harbors a cryptic secondary metabolite biosynthesis gene cluster (BGC).

View Article and Find Full Text PDF

Recent advances in genome sequencing have unveiled a large discrepancy between the genome-encoded capacity of microorganisms to produce secondary metabolites and the number detected. In this work, a two-platform mass spectrometry analysis for the comprehensive secondary metabolomics characterization of nine myxobacterial strains, focusing on extending the range of detectable secondary metabolites by diversifying analytical methods and cultivation conditions, is presented. Direct infusion measurements of crude extracts on a Fourier transform ion cyclotron resonance mass spectrometer are compared to a time-of-flight device coupled to liquid chromatography measurements.

View Article and Find Full Text PDF

Supercritical fluid extraction (SFE) is widely used for the isolation of natural products from plants, but its application in efforts to identify structurally and physicochemically often dissimilar microbial natural products is limited to date. In this study, we evaluated the impact of SFE on the extractability of myxobacterial secondary metabolites, aiming to improve the prospects of discovering novel natural products. We investigated the influence of different co-solvents on the extraction efficiency of secondary metabolites from three myxobacterial strains and the antimicrobial activity profiles of the corresponding extracts.

View Article and Find Full Text PDF

In recognition of many microorganisms ability to produce a variety of secondary metabolites in parallel, Zeeck and coworkers introduced the term "OSMAC" (one strain many compounds) around the turn of the century. Since then, additional efforts focused on the systematic characterization of a single bacterial species ability to form multiple secondary metabolite scaffolds. With the beginning of the genomic era mainly initiated by a dramatic reduction of sequencing costs, investigations of the genome encoded biosynthetic potential and especially the exploitation of biosynthetic gene clusters of undefined function gained attention.

View Article and Find Full Text PDF

Cyclomarins are highly potent antimycobacterial and antiplasmodial cyclopeptides isolated from a marine bacterium (Streptomyces sp.). Previous studies have identified the target proteins and elucidated a novel mode of action, however there are currently only a few studies examining the structure-activity relationship (SAR) for both pathogens.

View Article and Find Full Text PDF

To combat the increasing spread of antimicrobial resistance and the shortage of novel anti-infectives, one strategy for the development of new antibiotics is to optimize known chemical scaffolds. Here, we focus on the biosynthetic engineering of Amycolatopsis sulphurea for derivatization of the atypical tetracycline chelocardin and its potent broad-spectrum derivative 2-carboxamido-2-deacetyl-chelocardin. Heterologous biosynthetic genes were introduced into this chelocardin producer to modify functional groups and generate new derivatives.

View Article and Find Full Text PDF

Actinomycetes have been proven to be an excellent source of secondary metabolites for more than half a century. Exhibiting various bioactivities, they provide valuable approved drugs in clinical use. Most microorganisms are still untapped in terms of their capacity to produce secondary metabolites, since only a small fraction can be cultured in the laboratory.

View Article and Find Full Text PDF