Publications by authors named "Chanseok Shin"

Background: Seed dormancy is a biological mechanism that prevents germination until favorable conditions for the subsequent generation of plants are encountered. Therefore, this mechanism must be effectively established during seed maturation. Studies investigating the transcriptome and miRNAome of rice embryos and endosperms at various maturation stages to evaluate seed dormancy are limited.

View Article and Find Full Text PDF

MicroRNAs are sequentially processed by RNase III enzymes Drosha and Dicer. miR-451 is a highly conserved miRNA in vertebrates which bypasses Dicer processing and instead relies on AGO2 for its maturation. miR-451 is highly expressed in erythrocytes and regulates the differentiation of erythroblasts into mature red blood cells.

View Article and Find Full Text PDF

CHH methylation (mCHH) increases gradually during embryogenesis across dicotyledonous plants, indicating conserved mechanisms of targeting and conferral. Although it is suggested that methylation increase during embryogenesis enhances transposable element silencing, the detailed epigenetic pathways underlying this process remain unclear. In , mCHH is regulated by both small RNA-dependent DNA methylation (RdDM) and RNA-independent Chromomethylase 2 (CMT2) pathways.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates differences in DNA methylation during Arabidopsis embryogenesis and germination between two ecotypes: Columbia-0 (Col) and Cape Verde Island (Cvi), focusing on how these differences arise due to small RNA-directed DNA methylation.
  • Utilizing comparative pairwise multi-omics dynamics, the researchers found that methylation patterns are ecotype-dependent, with significant variations in genic CG methylation, particularly in regions unique to the Col ecotype, which were also associated with transposable elements.
  • The study confirms that the RdDM (RNA-directed DNA methylation) pathway plays a crucial role in regulating methylation levels both in ecotype-specific regions and in differentially
View Article and Find Full Text PDF

Clubroot caused by is a severe disease of cruciferous crops that decreases crop quality and productivity. Several clubroot resistance-related quantitative trait loci and candidate genes have been identified. However, the underlying regulatory mechanism, the interrelationships among genes, and how genes are regulated remain unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • - Pre-harvest sprouting (PHS) in rice leads to yield loss and quality issues due to unpredictable humidity, emphasizing the need to understand the molecular mechanisms behind seed dormancy.
  • - The study compared gene expression in the seeds of PHS susceptible and resistant rice accessions, revealing significant differences in genes and microRNAs related to seed dormancy and heat stress responses.
  • - Eight hormone-related genes, four heat shock protein-related genes, and two microRNAs were discovered to be potentially involved in PHS, enhancing the understanding of how these factors affect seed maturation.
View Article and Find Full Text PDF

Argonaute is the primary mediator of metazoan miRNA targeting (MT). Among the currently identified >1,500 human RNA-binding proteins (RBPs), there are only a handful of RBPs known to enhance MT and several others reported to suppress MT, leaving the global impact of RBPs on MT elusive. In this study, we have systematically analyzed transcriptome-wide binding sites for 150 human RBPs and evaluated the quantitative effect of individual RBPs on MT efficacy.

View Article and Find Full Text PDF

Honeybees are one of the most environmentally important insects, as their pollination of various plant species contributes to the balance among different ecosystems. It has been studied extensively for their unique attribute of forming a caste society. Unlike other insects, honeybees communicate socially by secreting pheromones or by exhibiting specific patterns of motion.

View Article and Find Full Text PDF

The 3' ends of metazoan microRNAs (miRNAs) are initially defined by the RNase III enzymes during maturation, but subsequently experience extensive modifications by several enzymatic activities. For example, terminal nucleotidyltransferases (TENTs) elongate miRNAs by adding one or a few nucleotides to their 3' ends, which occasionally leads to differential regulation of miRNA stability or function. However, the catalytic entities that shorten miRNAs and the molecular consequences of such shortening are less well understood, especially in vertebrates.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play roles in various biological processes in plants including growth, development, and disease resistance. Previous studies revealed that some plant miRNAs produce secondary small interfering RNAs (siRNAs) such as phased, secondary siRNAs (phasiRNAs), and they regulate a cascade of gene expression. We performed a genome-wide comparative analysis of miRNAs in Solanaceous species (pepper, tomato, and potato), from an evolutionary perspective.

View Article and Find Full Text PDF

Background: Nitrogen (N) is a key macronutrient essential for plant growth, and its availability has a strong influence on crop development. The application of synthetic N fertilizers on crops has increased substantially in recent decades; however, the applied N is not fully utilized due to the low N use efficiency of crops. To overcome this limitation, it is important to understand the genome-wide responses and functions of key genes and potential regulatory factors in N metabolism.

View Article and Find Full Text PDF

Epigenetic gene regulation is essential for developmental processes. Eggless (Egg), the Drosophila orthologue of the mammalian histone methyltransferase, SETDB1, is known to be involved in the survival and differentiation of germline stem cells and piRNA cluster transcription during Drosophila oogenesis; however the detailed mechanisms remain to be determined. Here, using high-throughput RNA sequencing, we investigated target genes regulated by Egg in an unbiased manner.

View Article and Find Full Text PDF

Specific gene silencing through RNA interference (RNAi) holds great promise as the next-generation therapeutic development platform. Previously, we have shown that branched, tripodal interfering RNA (tiRNA) structures could simultaneously trigger RNAi-mediated gene silencing of three target genes with 38 nt-long guide strands associated with Argonaute 2. Herein, we show that the branched RNA structure can trigger effective gene silencing in Dicer knockout cell line, demonstrating that the Dicer-mediated processing is not required for tiRNA activity.

View Article and Find Full Text PDF

DROSHA is the catalytic subunit of the Microprocessor complex, which initiates microRNA (miRNA) maturation in the nucleus by recognizing and cleaving hairpin precursors embedded in primary transcripts. However, accumulating evidence suggests that not all hairpin substrates of DROSHA are associated with the generation of functional small RNAs. By targeting those hairpins, DROSHA regulates diverse aspects of RNA metabolism across the transcriptome, serves as a line of defense against the expression of potentially deleterious elements, and permits cell fate determination and differentiation.

View Article and Find Full Text PDF

Mitochondrial dysfunction may play a key role in the progression of steatosis to nonalcoholic steatohepatitis (NASH); however, the molecular mechanism that controls the structure and function of mitochondria in NASH is not clearly understood. Here, we demonstrated that RORα is a regulator of expression of Bnip3 and PGC-1α, and thereby enhances mitochondrial quality. First, we observed that liver-specific RORα knockout mice (RORα-LKO) were more susceptible to high-fat diet-induced NASH compared with control, probably due to mitochondrial dysfunction.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in , the national flower of South Korea. We employed high-throughput sequencing of small RNAs obtained from four different tissues (, leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissue-specific expressions.

View Article and Find Full Text PDF

The nuclear RNase III enzyme DROSHA interacts with its cofactor DGCR8 to form the Microprocessor complex, which initiates microRNA (miRNA) maturation by cleaving hairpin structures embedded in primary transcripts. Apart from its central role in the biogenesis of miRNAs, DROSHA is also known to recognize and cleave miRNA-like hairpins in a subset of transcripts without apparent small RNA production. Here, we report that the human transcript is one such noncanonical target of DROSHA.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) regulate gene expression by guiding the Argonaute (Ago)-containing RNA-induced silencing complex (RISC) to specific target mRNA molecules. It is well established that miRNAs are stabilized by Ago proteins, but the molecular features that trigger miRNA destabilization from Ago proteins remain largely unknown. To explore the molecular mechanisms of how targets affect the stability of miRNAs in human Ago (hAgo) proteins, we employed an in vitro system that consisted of a minimal hAgo2-RISC in HEK293T cell lysates.

View Article and Find Full Text PDF

Various ascomycete fungi possess sex-specific molecular mechanisms, such as repeat-induced point mutations, meiotic silencing by unpaired DNA, and unusual adenosine-to-inosine RNA editing, for genome defense or gene regulation. Using a combined analysis of functional genetics and deep sequencing of small noncoding RNA (sRNA), mRNA, and the degradome, we found that the sex-specifically induced exonic small interference RNA (ex-siRNA)-mediated RNA interference (RNAi) mechanism has an important role in fine-tuning the transcriptome during ascospore formation in the head blight fungus Fusarium graminearum. Approximately one-third of the total sRNAs were produced from the gene region, and sRNAs with an antisense direction or 5'-U were involved in post-transcriptional gene regulation by reducing the stability of the corresponding gene transcripts.

View Article and Find Full Text PDF
Article Synopsis
  • Despite the understanding of how microRNAs (miRNAs) are produced and how they function, the mechanisms regulating their stability remain largely unexplored.
  • Recent research indicates that when miRNAs bind to complementary target RNAs, they can be released from Argonaute (Ago) proteins, which may lead to their destabilization.
  • The study found that interactions with non-canonical target RNAs significantly enhance miRNA destabilization, involving both unloading from Ago proteins and 3' end destabilization, influenced by structural changes in the Ago protein.
View Article and Find Full Text PDF

Ethylene is one of the most important hormones for plant developmental processes and stress responses. However, the phosphorylation regulation in the ethylene signaling pathway is largely unknown. Here we report the phosphorylation of cap binding protein 20 (CBP20) at Ser245 is regulated by ethylene, and the phosphorylation is involved in root growth.

View Article and Find Full Text PDF

Peptides have been in the limelight, as therapeutic agents for cancer treatment through various applications due to their high target selectivity and exceptional ability to penetrate the cell membrane. Recent studies have revealed that synthesized peptides bind to hairpin structures of RNA that affect their activities such as changing the efficacy of microRNA maturation. MicroRNA-mediated p53 activation by the microRNA-29 (miR29) family is one of the most important regulatory pathways in cancer therapeutics.

View Article and Find Full Text PDF

Small RNA silencing is mediated by the effector RNA-induced silencing complex (RISC) that consists of an Argonaute protein (AGOs 1-4 in humans). A fundamental step during RISC assembly involves the separation of two strands of a small RNA duplex, whereby only the guide strand is retained to form the mature RISC, a process not well understood. Despite the widely accepted view that 'slicer-dependent unwinding' via passenger-strand cleavage is a prerequisite for the assembly of a highly complementary siRNA into the AGO2-RISC, here we show by careful re-examination that 'slicer-independent unwinding' plays a more significant role in human RISC maturation than previously appreciated, not only for a miRNA duplex, but, unexpectedly, for a highly complementary siRNA as well.

View Article and Find Full Text PDF

Background: Long non-coding RNAs (lncRNAs) are a class of RNAs that do not encode proteins. Recently, lncRNAs have gained special attention for their roles in various biological process and diseases.

Results: In an attempt to identify long intergenic non-coding RNAs (lincRNAs) and their possible involvement in honey bee development and diseases, we analyzed RNA-seq datasets generated from Asian honey bee (Apis cerana) and western honey bee (Apis mellifera).

View Article and Find Full Text PDF

Small RNAs constitute a fundamental layer of gene regulation for diverse biological processes in plants, including development, metabolism and stress responses. With the advance of high-throughput sequencing technologies and the rapid accumulation of transcriptomic data, the scope of regulation afforded by small RNAs has expanded to encompass plant innate immune responses. Plants have evolved the capacity to control the infection through intracellular surveillance proteins of the nucleotide binding site-leucine-rich repeat (NB-LRR) family that recognize pathogen-encoded effectors and initiate effector-triggered immunity.

View Article and Find Full Text PDF