We report that a porous, electron-rich, covalent, organonitridic framework (PECONF-4) exhibits an unusually high hydrogen uptake at 77 K, relative to its specific surface area. Chahine's rule, a widely cited heuristic for hydrogen adsorption, sets a maximum adsorptive uptake of 1 wt % hydrogen at 77 K per 500 m of the adsorbent surface area. High-pressure hydrogen adsorption measurements in a Sieverts apparatus showed that PECONF-4 exceeds Chahine's rule by 50%.
View Article and Find Full Text PDFKrypton adsorption was measured at eight temperatures between 253 and 433 K on a zeolite-templated carbon and two commercial carbons. The data were fitted using a generalized Langmuir isotherm model and thermodynamic properties were extracted. Differing from that on commercial carbons, krypton adsorption on the zeolite-templated carbon is accompanied by an increasing isosteric enthalpy of adsorption, rising by up to 1.
View Article and Find Full Text PDFA thermodynamic study of the enthalpy of adsorption of methane on high surface area carbonaceous materials was carried out from 238 to 526 K. The absolute quantity of adsorbed methane as a function of equilibrium pressure was determined by fitting isotherms to a generalized Langmuir-type equation. Adsorption of methane on zeolite-templated carbon, an extremely high surface area material with a periodic arrangement of narrow micropores, shows an increase in isosteric enthalpy with methane occupancy; i.
View Article and Find Full Text PDFThe graphite intercalation compound KC(24) adsorbs hydrogen gas at low temperatures up to a maximum stoichiometry of KC(24)(H(2))(2), with a differential enthalpy of adsorption of approximately -9 kJ mol(-1). The hydrogen molecules and potassium atoms form a two-dimensional condensed phase between the graphite layers. Steric barriers and strong adsorption potentials are expected to strongly hinder hydrogen diffusion within the host KC(24) structure.
View Article and Find Full Text PDFZeolite-templated carbon (ZTC) materials were synthesized, characterized, and evaluated as potential hydrogen storage materials between 77 and 298 K up to 30 MPa. Successful synthesis of high template fidelity ZTCs was confirmed by X-ray diffraction and nitrogen adsorption at 77 K; BET surface areas up to ~3600 m(2) g(-1) were achieved. Equilibrium hydrogen adsorption capacity in ZTCs is higher than all other materials studied, including superactivated carbon MSC-30.
View Article and Find Full Text PDFThis paper reports a bottom-up solution-phase process for the preparation of pristine and heteroatom (boron, phosphorus, or nitrogen)-substituted carbon scaffolds that show good surface areas and enhanced hydrogen adsorption capacities and binding energies. The synthesis method involves heating chlorine-containing small organic molecules with metallic sodium at reflux in high-boiling solvents. For heteroatom incorporation, heteroatomic electrophiles are added to the reaction mixture.
View Article and Find Full Text PDFHydrogen uptake was measured for platinum doped superactivated carbon at 296 K where hydrogen spillover was expected to occur. High pressure adsorption measurements using a Sieverts apparatus did not show an increase in gravimetric storage capacity over the unmodified superactivated carbon. Measurements of small samples (∼0.
View Article and Find Full Text PDFA new approach to the incorporation of MgH2 in the nanometer-sized pores of a carbon aerogel scaffold was developed, by infiltrating the aerogel with a solution of dibutylmagnesium (MgBu2) precursor, and then hydrogenating the incorporated MgBu2 to MgH2. The resulting impregnated material showed broad x-ray diffraction peaks of MgH2. The incorporated MgH2 was not visible using a transmission electron microscope, which indicated that the incorporated hydride was nanosized and confined in the nanoporous structure of the aerogel.
View Article and Find Full Text PDFNanoparticles of MgH2 incorporated in a mesoporous carbon aerogel demonstrated accelerated hydrogen exchange kinetics but no thermodynamic change in the equilibrium hydrogen pressure. Aerogels contained pores from <2 to approximately 30 nm in diameter with a peak at 13 nm in the pore size distribution. Nanoscale MgH2 was fabricated by depositing wetting layers of nickel or copper on the aerogel surface, melting Mg into the aerogel, and hydrogenating the Mg to MgH2.
View Article and Find Full Text PDFStoring molecular hydrogen in porous media is one of the promising avenues for mobile hydrogen storage. In order to achieve technologically relevant levels of gravimetric density, the density of adsorbed H2 must be increased beyond levels attained for typical high surface area carbons. Here, we demonstrate a strong correlation between exposed and coordinatively unsaturated metal centers and enhanced hydrogen surface density in many framework structures.
View Article and Find Full Text PDFChanges in the local electronic structure at atoms around Li sites in the olivine phase of LiFePO4 were studied during delithiation. Electron energy loss spectrometry was used for measuring shifts and intensities of the near-edge structure at the K-edge of O and at the L-edges of P and Fe. Electronic structure calculations were performed on these materials with a plane-wave pseudopotential code and with an atomic multiplet code with crystal fields.
View Article and Find Full Text PDFWe report excess hydrogen saturation values from high-pressure isotherms of metal organic framework structures taken at 77 K. Zn benzendicarboxylate (IRMOF-1) and Zn naphthalendicarboxylate (IRMOF-8) linker structures show identical saturation values of 137 hydrogen molecules on a per unit cell basis, despite the higher sorption potential of IRMOF-8 of 6.1 kJ/mol over that of IRMOF-1 of 4.
View Article and Find Full Text PDFSamples of Li(x)Ni0.5Mn0.5O2 and Li(x)Ni(1/3)Mn(1/3)Co(1/3)O2 were prepared as active materials in electrochemical half-cells and were cycled electrochemically to obtain different values of Li concentration, x.
View Article and Find Full Text PDF