Publications by authors named "Channabasaveshwar V Yelamaggad"

In recent years, pseudocapacitive materials have been investigated rigorously as they provide a unique pathway for realizing high-energy and high-power densities. However, innovative approaches involving rational design and synthesis of new materials are still vital to address concerns such as degradation, low conductivity, low cycling performance, high resistance, production cost, etc. Working in this direction, we report the cost-effective synthesis, characterization, and excellent pseudocapacitive behavior of a Cd(II)-based coordination polymer (COP) abbreviated as Cd(DAB).

View Article and Find Full Text PDF

This study presents a comparative analysis of S-annulated perylene tetraester (PTE-S) and its sulfone (PTE-SO) analogue. This sulfone modification reduced melting point and stabilized a room temperature columnar rectangular (Col) phase in contrast to its parent PTE-S which showed a crystalline behaviour at room temperature. This molecular design also leads to red-shifted absorbance and emission in comparison to PTE-S, along with a tuning of photoluminescence from sky blue to green, achieving an impressive quantum yield of 85 %.

View Article and Find Full Text PDF

The mesogen 1,''7''-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB), doped with a small quantity of an amphiphilic compound, is examined in its biphasic state in which twist-bend nematic (N_{TB}) drops are dispersed in the isotropic fluid. Various flexoelectric and electrokinetic responses of small drops in their escaped-radial-like (ER) geometry, and also of larger ones with parabolic focal conic defects, are discussed. A pair of confocal parabolas with their axes along the applied low-frequency electric field undergo periodic dimensional changes so as to contribute flexoelectrically to free-energy reduction.

View Article and Find Full Text PDF

The mesogen CB7CB [1″,7″-bis(4-cyanobiphenyl-4'-yl)heptane], mixed with a small quantity of a long chain amphiphile, is examined for the structural features of twist-bend nematic (N_{TB}) drops acting as colloidal inclusions in the isotropic and nematic environments. In the isotropic phase, the drops nucleating in the radial (splay) geometry develop toward escaped radial, off-centered structures, involving both splay and bend distortions. With further growth, they transform into low-birefringence (near-homeotropic) objects, within which remarkably well-organized networks of parabolic focal conic defects evolve in time.

View Article and Find Full Text PDF

Azobenzene liquid crystalline (ALC) ligand contains a cholesteryl group linked to an azobenzene moiety through a carbonyl dioxy spacer (C7) and terminated with an amine group as a polar head. The phase behaviour of the C7 ALC ligand at the air-water (A-W) interface is investigated employing surface manometry. The surface pressure-area per molecule isotherm shows that C7 ALC ligand exhibit two different phases following the phase sequence viz.

View Article and Find Full Text PDF

The borate complexes derived from salicylaldimine ligands, called boranils, possess a wide range of photophysical and electronic characteristics intrinsically. The unique combination of molecular rigidity, rendered by four-coordinate boron bridges, and extended π-conjugation enable them to serve as technically feasible fluorescent materials (dyes). The incorporation of liquid crystallinity in these boron(III) complexes, especially the columnar (Col) mesomorphism, which is overlooked hitherto, would provide a new dimension to these complexes.

View Article and Find Full Text PDF

Binary mixtures of the mesogen [1″,7″-bis(4-cyanobiphenyl-4'-yl)heptane] and a long chain amphiphile (e.g., 2-octadecoxypropanol) are examined for the structure, stability, and electro-optical behavior of nematic drops dispersed in the isotropic phase, in planar cells.

View Article and Find Full Text PDF

Conjugated polymers (CPs) are emerging as part of a promising future for gas-sensing applications. However, some of their limitations, such as poor specificity, humidity sensitivity and poor ambient stability, remain persistent. Herein, a novel combination of a polymer-monomer heterostructure, derived from a CP (PDVT-10) and a newly reported monomer [tris(keto-hydrazone)] has been integrated in an organic field-effect transistor (OFET) platform to sense HS selectively.

View Article and Find Full Text PDF

Tunability of fluorescence intensity is an essential parameter for enhancing the versatility of devices like emissive displays and solar cells. Soft photonic crystals, with their tunable photonic band gap (PBG), are highly sought-after systems for such purposes. Here, we report modulation of photoluminescence (PL) intensity in a fluorescent dye-doped blue phase liquid crystal, a 3D soft photonic crystal.

View Article and Find Full Text PDF

Twist grain boundary (TGB) phases exhibiting highly frustrated and complex liquid crystal structures have aroused enormous interest because of their close resemblance to superconductors. The remarkable experimental demonstration of their occurrence by Goodby and co-workers paved the way for developing new research endeavors. However, of the several genuine concerns associated with these intriguing structures, their temperature range has been challenging.

View Article and Find Full Text PDF

Colloidal systems comprising solid or fluid particles dispersed in nematic monodomains are known to be a convenient means to study topological defects. Recent experiments have shown that twist-bend nematic (N_{TB}) droplets in a nematic matrix act as colloidal particles that lead to the formation of elastic dipoles, quadrupoles, and their ordered clusters. In this study, we examine the effect of low-frequency (f∼mHz) electric fields on such defect configurations.

View Article and Find Full Text PDF

Dynamic tuning of electromagnetic response is an important parameter to realize exotic applications of optical metamaterials. Self-assembly achieved the incorporation of soft materials is an attractive approach to achieve tunable optical properties. Among the soft materials, liquid crystals are highly sought after due to the inherent soft-stimuli responsiveness.

View Article and Find Full Text PDF

Owing to their proven and promising potential in various technological endeavors ranging from catalysis and sensing to invisibility cloaks made from metamaterials, chiral plasmonic superstructures resulting from the directed self-assembly of optically active metal nanoparticles (MNPs) have been pursued intensively in recent years. Several strategic efforts have emerged especially to accomplish advanced nanomaterials assembling into liquid crystalline (LC) helical structures, where MNPs are regularly packed in fluid/frozen arrays/layers or wires (columns). While the helical fluid columnar arrays (molecular wires) showing circular dichroism (CD) have been realized, the discovery of fluid chiral lamellar ordering, where the dielectric and conducting regimes are arranged alternatively, has hitherto remained highly elusive.

View Article and Find Full Text PDF

The first examples of deep-red/near-infrared (NIR) photoluminescent, (n,π-conjugated) discotics, namely, -tris(keto-hydrazone)s, which are the tautomers of tris(azo-enol)s, have been synthesized via a facile one-step triple azo-coupling and characterized. The n,π-resonance-assisted intramolecular H-bonding, rendering planarity and shape persistence to the central core, facilitates their self-assembly into either a hexagonal columnar (Col) phase (6 lattice) or a columnar rectangular (Col) phase (2 lattice), over an extended thermal range including room temperature, fluorescing in the deep-red/NIR-I region. The low band gap with deep-red/NIR emission makes them ideal candidates for NIR-organic light-emitting diodes (OLEDs) and bioimaging.

View Article and Find Full Text PDF

Colloids formed of solid/fluid particle dispersions in oriented nematic liquid crystals are known to be an ideal means of realizing fundamentally significant topological defect geometries. We find, experimentally, that twist-bend nematic (NTB) droplets formed in the N-NTB biphasic regime, either of pure compounds or mesogenic mixtures, completely mimic colloidal particles in their ability to generate a rich variety of defects. In the biphasic regime, the topological features of both liquid crystal colloids and chiral nematic droplets are revealed by (i) topological dipoles, quadrupoles and their patterned clusters formed in planar nematic liquid crystals orientationally perturbed by coexisting NTB drops, (ii) the transformation of hyperbolic hedgehogs into knotted Saturn rings encircling the NTB drops dispersed in a 90°-twisted nematic matrix and (iii) the Frank-Pryce defect texture evident in smaller (relative to sample thickness) NTB drops.

View Article and Find Full Text PDF

We report experimental studies on the phase behavior of binary mixtures of 1″,7″-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB) and 4,4-diheptyloxyazoxybenzene, which exhibit, apart from the nematic (N) and twist-bend nematic (N_{TB}) phases, the induced smectic-A (Sm-A) phase for weight fraction of CB7CB between 0.05 and 0.70.

View Article and Find Full Text PDF

In this report, based on the results derived from the extensive study into the thermal and photophysical properties, an anomalous mesomorphic behavior of photoluminescent, chiral nematic (N*) liquid crystalline dimers, belonging to two different series has been revealed. They comprise cholesterol and fluorescent three-ring Schiff base or salicylaldimine core interlinked via an ω-oxyalkanoyloxy spacer of varying length and parity. The effect of molecular structure on the liquid crystal (LC) behavior and photophysical properties of both the series has been probed by varying the length of the terminal n-alkoxy tails for a fixed (odd or even) parity of the spacer.

View Article and Find Full Text PDF

Nanoscale structures in fluid media normally require techniques such as freeze fracture electron microscopy and atomic force microscopy for their visualization. As demonstrated in the present study, the surface modification due to nanoscale clusters occurring intrinsically in nematics made of bent-shaped molecules with either rigid or flexible cores leads to microscale structures, which are visible in an optical microscope. The underlying physical mechanism proposed here involves a quasiperiodic change in anchoring conditions on untreated glass plates for the medium made of islands of clusters surrounded by unclustered molecules.

View Article and Find Full Text PDF

A soft photoluminescent composite, prepared using a nematic liquid crystal and a fluorescent gelator, exhibits a nearly two orders of magnitude increase in fluorescence on addition of superparamagnetic nanoparticles. The internal magnetic field generated leading to an increase in the population of singlet excitons which affects the radiative efficiency, and enhanced ordering of the LC environment are proposed to be responsible for the large increase seen in fluorescence. Also, the nematic nature of the host liquid crystal medium aids in switching of the fluorescence intensity between its anisotropic limits on application of an external electric field with the switch-off time being faster compared to the field-driven switch-on time.

View Article and Find Full Text PDF

We report on the instabilities in the Freedericksz state of the twist-bend nematic (NTB) liquid crystal 1'',7''-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB). The quasi homeotropic NTB state, into which a planar (untwisted or 90°-twisted) nematic CB7CB layer transits under a strong electric field, is found to be unstable despite the material being dielectrically positive. Close to the NTB melting point, destabilization occurs through the formation of metastable toric focal conic domains (TFCDs) that, in time, transform into parabolic focal conic domains (PFCDs) with the confocal parabolae in vertical planes through the layer normal.

View Article and Find Full Text PDF

The chiral ferroelectric smectic C (SmC*) phase, characterized by a helical superstructure, has been well exploited in developing high-resolution microdisplays that have been effectively employed in the fabrication of a wide varieties of portable devices. Although, an overwhelming number of optically active (chiral) liquid crystals (LCs) exhibiting a SmC* phase have been designed and synthesized, the search for new systems continues so as to realize mesogens capable of meeting technical necessities and specifications for their end-use. In continuation of our research work in this direction, herein we report the design, synthesis, and thermal behavior of twenty new optically active, three-ring calamitic LCs belonging to four series.

View Article and Find Full Text PDF

We report a robust soft photonic crystal system, fabricated using blue phase (BP) liquid crystal, which can efficiently filter the visible light. The BP gel system is obtained without surface treatment or polymerization, and thus is facile and cost effective to fabricate. Perfect monodomain with vivid color is achieved with a low electric field, which can be further tuned to reflect a second color.

View Article and Find Full Text PDF

We report wormlike flexoelectric structures evolving deep in the Freedericksz state of a nematic layer of the liquid crystal cyanobiphenyl-(CH2)-cyanobiphenyl. They form in the predominantly splay-bend thin boundary layers and are built up of solitary flexoelectric domains of the Bobylev-Pikin type. Their formation is possibly triggered by the gradient flexoelectric surface instability that remains optically discernible up to unusually high frequencies.

View Article and Find Full Text PDF

Controllable manipulation of self-organized dynamic superstructures of functional molecular materials by external stimuli is an enabling enterprise. Herein, we have developed a thermally driven, self-organized helical superstructure, i.e.

View Article and Find Full Text PDF

Sixteen optically active, non-symmetric dimers, in which cyanobiphenyl and salicylaldimine mesogens are interlinked by a flexible spacer, were synthesized and characterized. While the terminal chiral tail, in the form of either (R)-2-octyloxy or (S)-2-octyloxy chain attached to salicylaldimine core, was held constant, the number of methylene units in the spacer was varied from 3 to 10 affording eight pairs of (R & S) enantiomers. They were probed for their thermal properties with the aid of orthoscopy, conoscopy, differential scanning calorimetry and X-ray powder diffraction.

View Article and Find Full Text PDF