A novel multimodular donor-acceptor polyad featuring zinc porphyrin, fullerene, ferrocene, and triphenylamine entities was designed, synthesized, and studied as a charge-stabilizing, photosynthetic-antenna/reaction-center mimic. The ferrocene and fullerene entities, covalently linked to the porphyrin ring, were distantly separated to accomplish the charge-separation/hole-migration events leading to the creation of a long-lived charge-separated state. The geometry and electronic structures of the newly synthesized compound was deduced by B3LYP/3-21G(*) optimization, while the energy levels for different photochemical events was established using data from the optical absorption and emission, and electrochemical studies.
View Article and Find Full Text PDFNew multi-modular donor-acceptor conjugates featuring zinc porphyrin (ZnP), catechol-chelated boron dipyrrin (BDP), triphenylamine (TPA) and fullerene (C(60)), or naphthalenediimide (NDI) have been newly designed and synthesized as photosynthetic antenna and reaction-center mimics. The X-ray structure of triphenylamine-BDP is also reported. The wide-band capturing polyad revealed ultrafast energy-transfer (k(ENT) =1.
View Article and Find Full Text PDFTwo electropolymerizable zinc porphyrins with receptor sites tailor-designed for selective recognition of the nicotine, cotinine, or myosmine alkaloids were synthesized. These were 5-(2-phenoxyacetamide)-10,15,20-tris(triphenylamino)porphyrinato zinc(II) 1 and 5-(2,5-phenylene-bis(oxy)diacetamide)-10,15,20-tris(triphenylamino)porphyrinato zinc(II) 2 featuring one and two pendant amide side "pincers", respectively, and three triphenylamine substituents at the meso positions of the porphyrin macrocycles capable of electrochemical polymerization. Thin polymerfilms of these porphyrins served for recognition and the piezoelectric microgravimetry (PM) for analytical signal transduction of a new chemical sensor devised for determination of these alkaloids.
View Article and Find Full Text PDFA self-assembled supramolecular triad as a model to mimic the light-induced events of the photosynthetic antenna-reaction center, that is, ultrafast excitation transfer followed by electron transfer ultimately generating a long-lived charge-separated state, has been accomplished. Boron dipyrrin (BDP), zinc porphyrin (ZnP) and fullerene (C(60)), respectively, constitute the energy donor, electron donor and electron acceptor segments of the antenna-reaction center imitation. Unlike in the previous models, the BDP entity was placed between the electron donor, ZnP and electron acceptor, C(60) entities.
View Article and Find Full Text PDFA series of molecular triads, composed of closely positioned boron dipyrrin-fullerene units, covalently linked to either an electron donor (donor(1)-acceptor(1)-acceptor(2)-type triads) or an energy donor (antenna-donor(1)-acceptor(1)-type triads) was synthesized and photoinduced energy/electron transfer leading to stabilization of the charge-separated state was demonstrated by using femtosecond and nanosecond transient spectroscopic techniques. The structures of the newly synthesized triads were visualized by DFT calculations, whereas the energies of the excited states were determined from spectral and electrochemical studies. In the case of the antenna-donor(1)-acceptor(1)-type triads, excitation of the antenna moiety results in efficient energy transfer to the boron dipyrrin entity.
View Article and Find Full Text PDFNew molecular triads composed of closely spaced ferrocene-boron dipyrrin-fullerene, 1 and triphenylamine-boron dipyrrin-fullerene, 2 are synthesized, and photoinduced electron transfer leading to charge stabilization is demonstrated using a femtosecond transient spectroscopic technique.
View Article and Find Full Text PDFAn elegant method of self-assembly for modification of a TiO(2) surface using coordinating ligands followed by immobilization of variety of sensitizers and a dyad is reported. This highly versatile method, in addition to testing the photoelectrochemical behavior of different zinc tetrapyrroles, allowed the use of fairly complex structures involving more than one donor entity. Utilization of the zinc porphyrin-ferrocene dyad markedly improved the current-voltage performance of the photoelectrochemical cell through an electron transfer-hole migration mechanism.
View Article and Find Full Text PDFA new concept of charge stabilization via delocalization of the pi-cation radical species over the donor macrocycle substituents in a relatively simple donor-acceptor bearing multimodular conjugates is reported. The newly synthesized multimodular systems were composed of three covalently linked triphenylamine entities at the meso position of the porphyrin ring and one fulleropyrrolidine at the fourth meso position. The triphenylamine entities were expected to act as energy transferring antenna units and to enhance the electron donating ability of both free-base and zinc(II) porphyrin derivatives of these pentads.
View Article and Find Full Text PDF