Publications by authors named "Chankyu Kang"

Leakage accidents at chemical facilities have a negative impact on both the environment and human life, and the government has established and implemented regulations on dikes in order to minimize such accidents. However, the overtopping phenomenon in which chemicals overflow the dike due to catastrophic leakage requires additional safeguards. In this study, the mitigation effect was confirmed by simulating tanks and dikes using various deflector plates to minimize the effect of spilled chemicals.

View Article and Find Full Text PDF

The increasing use and distribution of chemicals are causing serious chemical accidents such as fires, explosions, and leaks during manufacturing and handling. In most cases, all risks caused by chemicals are classified as accidents due to defects in process facilities, human errors, and multi-cause accidents. Among chemical accidents caused by human errors, accurate analysis of accidents caused by the complex action of various types of human failures is required.

View Article and Find Full Text PDF

Recently, the impact of radioactive caesium (Cs) and strontium (Sr) on human health and the ecosystem has been a major concern due to the use of nuclear energy. However, this study observed changes in green-fluorescent (GFP)-tagged PAO1 biofilms by injecting non-radioactive caesium chloride (CsCl) and strontium chloride (SrCl) into microstructures embedded in polydimethylsiloxane microfluidic devices, which were used due to their strong toxicity limitations. Four types of microstructures with two different diameters were used in the study.

View Article and Find Full Text PDF

Functional p-aramid fibers that can express antimicrobial activity were produced by simple processing of silver nanoparticles (AgNPs), which are well known as antimicrobial agents, by using glycidyltrimethylammonium chloride (GTAC), a quaternary ammonium salt. P-aramid fibers were treated with GTAC by the pad-dry-cure process and put into an Ag colloid solution for reactions at 40 °C for 90 min to prepare GTAC/AgNPs-treated -aramid fibers. Through these processes, GTAC was used as a substitute for existing cross-linking agents.

View Article and Find Full Text PDF

Deformable polydimethylsiloxane (PDMS) microfluidic devices embedded with three differently-shaped obstacles (hexagon, square, and triangle) were used to examine the significant challenge to classical fluid dynamics. The significant factors in determining a quasi-steady state value of flow velocity () and pressure drop per unit length (∆/∆) were dependent on the characteristic of embedded microstructures as well as the applied flow rates. The deviation from the theoretical considerations due to PDMS bulging investigated by the friction constant and the normalized friction factor revealed that the largest PDMS bulging observed in hexagonal obstacles had the smallest (∆/∆) ratios, whereas triangle obstacles exhibited the smallest PDMS bulging, but recorded the largest (∆/∆) ratios.

View Article and Find Full Text PDF

This paper describes the use of an analytical microfluidic sensor for accelerating chemo-repellent response and strong anti-bacterial 1-(Thien-2-yl)-3-(2, 6-difluoro phenyl) prop-2-en-1-one (1-TDPPO). The chemically-synthesized antimicrobial agent, which included prop-2-en-1-one and difluoro phenyl groups, was moving through an optically transparent polydimethylsiloxane (PDMS) microfluidic sensor with circular obstacles arranged evenly. The response, growth and distribution of fluorescent labeling PAO1 against the antimicrobial agent were monitored by confocal laser scanning microscope (CLSM).

View Article and Find Full Text PDF

Escherichia coli (E. coli) was used to activate hydrolysis reaction along with biodegradation in natural and synthetic fibers to identify possibilities as alternative substitutes for textile wastes using chemical solutions and enzymes. To confirm the reaction between the bacterial infections of E.

View Article and Find Full Text PDF

Experimental investigations were conducted to determine the influence of polydimethylsiloxane (PDMS) microfluidic channels containing aligned circular obstacles (with diameters of 172 µm and 132 µm) on the flow velocity and pressure drop under steady-state flow conditions. A significant PDMS bulging was observed when the fluid flow initially contacted the obstacles, but this phenomenon decreased in the 1 mm length of the microfluidic channels when the flow reached a steady-state. This implies that a microfluidic device operating with steady-state flows does not provide fully reliable information, even though less PDMS bulging is observed compared to quasi steady-state flow.

View Article and Find Full Text PDF

Microbial biotransformation is a great model system to produce drugs and biologically active compounds. In this study, we elucidated the fermentation and production of an anti-cancer agent from a microbial process for regiospecific hydroxylation of resveratrol. Among the strains examined, a potent strain showed high regiospecific hydroxylation activity to produce piceatannol.

View Article and Find Full Text PDF

Here, we present a simple method for controlling the density of Au nanoparticles (Au NPs) on a modified silicon substrate, by destabilizing the colloidal Au NPs with 3-mercaptopropyltrimethoxylsilane (3-MPTMS) for microelectromechanical-system-based applications to reduce tribological issues. A silicon surface was pretreated with a 3-MPTMS solution, immediately after which thiolated Au NPs were added to it, resulting in their uniform deposition on the silicon substrate. Without any material property change of the colloidal Au NPs, we observed the formation of large clusters Au NPs on the modified silicon surface.

View Article and Find Full Text PDF

Understanding the mechanical properties of optically transparent polydimethylsiloxane (PDMS) microchannels was essential to the design of polymer-based microdevices. In this experiment, PDMS microchannels were filled with a 100 μM solution of rhodamine 6G dye at very low Reynolds numbers (∼10(-3)). The deformation of PDMS microchannels created by pressure-driven flow was investigated by fluorescence microscopy and quantified the deformation by the linear relationship between dye layer thickness and intensity.

View Article and Find Full Text PDF