Grappling with the global ecological concern of the Aral Sea disaster, Uzbekistan exemplifies the urgent necessity of unravelling and addressing the complex Water-Energy-Food-Ecology (WEFE) nexus conflicts in arid regions, a critical task yet largely uncharted. Through the strategic process of 'Indicator Articulation - Weight Calibration - Nexus Coordination Quantification - Correlational Analysis', this work has developed a tailored framework that integrates a novel, context-specific indicator system, enabling an illumination of the intricate dynamics within the WEFE nexus in arid regions. During 2000-2018, the WEFE Nexus in Uzbekistan showed low-level coordination, indicating systemic imbalances.
View Article and Find Full Text PDFSci Total Environ
November 2022
The massive desiccation of the Aral Sea, the fourth largest lake in the world, has led to severe ecological problems, expansion of cropland was thought to be the main factor driving that shrinkage. But this study performed a long-term land cover and use change assessment for Aral Sea Basin (ASB) to show that the cropland has stopped expanding in 2000, of which the cropland in the ASB plain area has decreased significantly (-140 km/year) from 2001 to 2019. By contrast, this study finds the hydrological cycle in the ASB has intensified through a spatial and temporal scale approach based on Earth observation.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2022
Lower reaches of the Amu Darya River Basin (LADB) is one of the typical regions which is facing the problem of water shortage in Central Asia. During the past decades, water resources demand far exceeds that supplied by the mainstream of the Amu Darya River, and has resulted in a continuous decrease in the amount of water flowing into the Aral Sea. Clarifying the dynamic relationship between the water supply and demand is important for the optimal allocation and sustainable management of regional water resources.
View Article and Find Full Text PDF