Publications by authors named "Chanikul Chutrakul"

Background: Cordycepin (3'-deoxyadenosine) is an important bioactive compound in medical and healthcare markets. The drawbacks of commercial cordycepin production using Cordyceps spp. include long cultivation periods and low cordycepin yields.

View Article and Find Full Text PDF

Transcriptional regulation has been adopted for developing metabolic engineering tools. The regulatory promoter is a crucial genetic element for strain optimization. In this study, a gene set of Aspergillus oryzae with highly constitutive expression across different growth stages was identified through transcriptome data analysis.

View Article and Find Full Text PDF

Ammonium is a source of fermentable inorganic nitrogen essential for the growth and development of filamentous fungi. It is involved in several cellular metabolic pathways underlying nitrogen transport and assimilation. Ammonium can be transferred into the cell by an ammonium transporter.

View Article and Find Full Text PDF

The growing demand for natural pigments in the industrial sector is a significant driving force in the development of production processes. The production of natural blue pigments, which have wide industrial applications, using microbial systems has been gaining significant attention. In this study, we used Aspergillus oryzae as a platform cell factory to produce the blue pigment indigoidine (InK), by genetic manipulation of its non-ribosomal peptide synthetase system to overexpress the indigoidine synthetase gene (AoinK).

View Article and Find Full Text PDF

The potent promoter and its transcriptional control make a significant contribution to strain optimization. Using transcriptomebased approach, a novel pentose-regulated promoter of the xylose reductase gene () of  was identified. The promoter analysis showed that the  was tightly regulated by pentose sugars, which xylose and xylan were favorable inducers.

View Article and Find Full Text PDF

Oligopeptides with functional activities are of current interest in the nutraceutical and medical sectors. The development of the biosynthetic process of oligopeptides through a nonribosomal peptide synthetase (NRPS) system has become more challenging. To develop a production platform for nonribosomal peptides (NRPs), reprogramming of transcriptional regulation of the acv gene encoded ACV synthetase (ACVS) was implemented in Aspergillus oryzae using the CRISPR-Cas9 system.

View Article and Find Full Text PDF

Microbial lipid production of oleaginous strains involves in a complex cellular metabolism controlling lipid biosynthesis, accumulation and degradation. Particular storage lipid, triacylglycerol (TAG), contributes to dynamic traits of intracellular lipids and cell growth. To explore a basis of TAG degradation in the oleaginous strain of Aspergillus oryzae, the functional role of two intracellular triacylglycerol lipases, AoTgla and AoTglb, were investigated by targeted gene disruption using CRISPR/Cas9 system.

View Article and Find Full Text PDF

U6 RNA polymerase III promoter (PU6), which is a key element in controlling the generation of single-guide RNA (sgRNA) for gene editing through CRISPR-Cas9 system, was investigated in this work. Using bioinformatics approach, two novel U6 ribonucleic acid (U6 RNA) sequences of Aspergillus niger were identified, showing that they had conserved motifs similar to other U6 RNAs. The putative PU6 located at the upstream sequence of A.

View Article and Find Full Text PDF

Cell morphology of the oleaginous fungus, Aspergillus oryzae BCC7051, was genetically engineered by disruption of non-essential genes involved in cell wall biosynthesis. Comparative phenotypic analysis of two disruptant strains defective either in α-1,3-glucan synthase 1 (ΔAoAgs1) or chitin synthase B (ΔAoChsB), and the wild type showed that the ΔAoAgs1 strain had no alterations in colonial growth and sporulation when grown on agar medium whereas the ΔAoChsB disruptant showed growth retardation and lower sporulation. However, tiny and loose pellets were found in the ΔAoAgs1 culture grown in liquid medium, where fungal pellet size was decreased by 35-50% of the wild type size.

View Article and Find Full Text PDF

Biological significance of 18-carbon polyunsaturated fatty acids, γ-linolenic acid (GLA; C18:3 n-6) and dihomo-γ-linolenic acid (DGLA; C20:3 n-6) has gained much attention in the systematic development of optimized strains for industrial applications. In this work, a n-6 PUFAs-producing strain of Aspergillus oryzae was generated by manipulating metabolic reactions in fatty acid modification and triacylglycerol biosynthesis. The codon-optimized genes coding for Δ-desaturase and Δ-elongase of Pythium sp.

View Article and Find Full Text PDF

An endophytic actinobacterium, designated strain KE2-3, was isolated from surface-sterilised rhizome of Kaempferia elegans. The polyphasic approach was used for evaluating the taxonomic position of this strain. The taxonomic affiliation of this strain at genus level could be confirmed by its chemotaxonomic characteristic, i.

View Article and Find Full Text PDF

Based on available genome sequences and bioinformatics tools, we searched for an uncharacterized open reading frame of Mortierella alpina (MaDGAT2) using diacylglycerol acyltransferase sequence (fungal DGAT type 2B) as a query. Functional characterization of the identified native and codon-optimized M. alpina genes were then performed by heterologous expression in Saccharomyces cerevisiae strain defective in synthesis of neutral lipid (NL).

View Article and Find Full Text PDF

A novel endophytic actinomycete, designated strain SC1-1T, was isolated from sterilized stem tissue from Stahlianthus campanulatus collected in Udon Thani province, Thailand. The isolate formed short chains of spores on aerial mycelium and presented meso-diaminopimelic acid in the cell wall peptidoglycan. Glucose, madurose, mannose, rhamnose and ribose were observed as sugars in the cells.

View Article and Find Full Text PDF

A novel endophytic actinomycete, designated strain KK1-3T, which formed single spores and long chains of spores (more than 10 spores) was isolated from surface-sterilized Kaempferia larsenii leaf collected from Ubon Ratchathani province, Thailand. The isolate contained l-lysine, meso-diaminopimelic acid and hydroxyl diaminopimelic acid in the cell-wall peptidoglycan. The whole-cell sugars included glucose, mannose, rhamnose, ribose, galactose and xylose.

View Article and Find Full Text PDF

A novel Gram-stain-positive, non-motile, endophytic actinomycete, designated strain BR3-1, which produced spore chains borne on the tips of short sporophores, was isolated from the rhizome of collected from Udon Thani province, Thailand. This strain was investigated for its taxonomic position using a polyphasic approach. The strain contained 3-hydroxydiaminopimelic acid and -diaminopimelic acid in the cell-wall peptidoglycan.

View Article and Find Full Text PDF

Microbial lipids are promising alternative sources of long chain-polyunsaturated fatty acids (LC-PUFAs) for food, feed, nutraceutical and pharmaceutical sectors. Dihomo-γ-linolenic acid (C20:3Δ(8,11,14); DGLA) is an important LC-PUFAs with anti-inflammatory and anti-proliferative effects. To generate a DGLA-producing strain, fatty acid reconstitution in Aspergillus oryzae was performed by metabolic engineering through co-expression of codon-optimized Pythium Δ(6)-desaturase and Δ(6)-elongase, which had high conversion rates of substrates to respective products as compared to the native enzymes.

View Article and Find Full Text PDF

Background: The ∆(6)-desaturase gene, encoding a key enzyme in the biosynthesis of polyunsaturated fatty acids, has potential in pharmaceutical and nutraceutical applications.

Results: The ∆(6)-desaturase gene has been isolated from a selected strain of Oomycetes, Pythium sp. BCC53698.

View Article and Find Full Text PDF

Iron is an essential element for life. However, the iron overload can be toxic. Here, we investigated the significant increase of tenellin and iron-tenellin complex production in ferricrocin-deficient mutants of Beauveria bassiana.

View Article and Find Full Text PDF

We identified a novel elongase gene from a selected strain of the Oomycete, Pythium sp. BCC53698. Using a PCR approach, the cloned gene (PyElo) possessed an open reading frame (ORF) of 834 bp encoding 277 amino acid residues.

View Article and Find Full Text PDF

Severe chili anthracnose disease in Thailand is caused by Colletotrichum gloeosporioides and C. capsici. To discover anti-anthracnose substances we developed an efficient dual-fluorescent labeling bioassay based on a microdilution approach.

View Article and Find Full Text PDF

The ant-pathogenic fungus Ophiocordyceps unilateralis BCC1869 produces six naphthoquinone (NQ) derivatives. These NQs can be found in fungal-infected ants or produced in culture. Also, the NQs have antibacterial, anticancer, and antimalarial activities and are red pigments with potential for use as natural colorants.

View Article and Find Full Text PDF

Trichoderma spp. are regularly found as a constituent of the mycoflora of many soils and are noted for their antagonistic activity against bacteria and other fungi. This latter property is the basis for the widespread interest in their use in the biological control of soil-borne fungal plant pathogens.

View Article and Find Full Text PDF

Many species of Trichoderma have attracted interest as agents for the biological control of soil borne fungal pathogens of a range of crop plants. Research on the biochemical mechanisms associated with this application has focused on the ability of these fungi to produce enzymes which lyse fungal cell walls, and antifungal antibiotics. An important group of the latter are the non-ribosomal peptides called peptaibols.

View Article and Find Full Text PDF