The main bottlenecks that hinder the performance of rechargeable zinc electrochemical cells are their limited cycle lifetime and energy density. To overcome these limitations, this work studied the mechanism of a dual-ion Zn-Cu electrolyte to suppress dendritic formation and extend the device cycle life while concurrently enhancing the utilization ratio of zinc and thereby increasing the energy density of zinc ion capacitors (ZICs). The ZICs achieved a best-in-class energy density of 41 watt hour per kilogram with a negative-to-positive (n/p) electrode capacity ratio of 3.
View Article and Find Full Text PDFOrganic retinomorphic sensors offer the advantage of in-sensor processing to filter out redundant static backgrounds and are well suited for motion detection. To improve this promising structure, here, the key role of interfacial energetics in promoting charge accumulation to raise the inherent photoresponse of the light-sensitive capacitor is studied. Specifically, incorporating appropriate interfacial layers around the photoactive layer is crucial to extend the carrier lifetime, as confirmed by intensity-modulated photovoltage spectroscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
The integration of quantum dots (QDs) into device arrays for high-resolution display and imaging sensor systems remains a significant challenge in research and industry because of issues associated with the QD patterning process. It is difficult for conventional patterning processes such as stamping, inkjet printing, and photolithography to employ QDs and fabricate high-resolution patterns without degrading the properties of QDs. Here, we introduce a novel strategy for the QD patterning process by treating QDs with a bifunctional ligand for acid-base reaction-assisted photolithography.
View Article and Find Full Text PDFPrevious approaches to induce photomultiplication in organic diodes have increased the photosignal but lacked control over reducing background noise. This work presents a new interlayer design based on a heterojunction bilayer that concurrently enables photomultiplication and suppresses the dark current in organic shortwave infrared detectors to improve the overall detectivity. The heterojunction bilayer consists of a hole-transporting material copper thiocyanate and an electron-transporting material tin oxide, and this combination offers the ability to block charge injection in the dark.
View Article and Find Full Text PDFSingle-entity analysis is an important research topic in electrochemistry. To date, electrode collisions and subsequent electrode-particle interactions have been studied for many types of nano-objects, including metals, polymers, and micelles. Here we extend this nano-object electrochemistry analysis to Pickering emulsions for the first time.
View Article and Find Full Text PDF