Transfer learning is an effective approach for adapting an autonomous agent to a new target task by transferring knowledge learned from the previously learned source task. The major problem with traditional transfer learning is that it only focuses on optimizing learning performance on the target task. Thus, the performance on the target task may be improved in exchange for the deterioration of the source task's performance, resulting in an agent that is not able to revisit the earlier task.
View Article and Find Full Text PDFIn light field compression, graph-based coding is powerful to exploit signal redundancy along irregular shapes and obtains good energy compaction. However, apart from high time complexity to process high dimensional graphs, their graph construction method is highly sensitive to the accuracy of disparity information between viewpoints. In real-world light field or synthetic light field generated by computer software, the use of disparity information for super-rays projection might suffer from inaccuracy due to vignetting effect and large disparity between views in the two types of light fields, respectively.
View Article and Find Full Text PDFImitation learning is an effective approach for an autonomous agent to learn control policies when an explicit reward function is unavailable, using demonstrations provided from an expert. However, standard imitation learning methods assume that the agents and the demonstrations provided by the expert are in the same domain configuration. Such an assumption has made the learned policies difficult to apply in another distinct domain.
View Article and Find Full Text PDF