Publications by authors named "Changzu Zhu"

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18).

View Article and Find Full Text PDF

Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.

View Article and Find Full Text PDF

Forensic diagnosis of sudden cardiac death (SCD) is an extremely important part of routine forensic practice. The present study aimed to develop and validate nomograms for predicting the probability of SCD with special regards to ischemic heart disease-induced SCD (IHD-induced SCD) based on multiple autopsy variables. A total of 3322 cases, were enrolled and randomly assigned into a training cohort (n = 2325) and a validation cohort (n = 997), respectively.

View Article and Find Full Text PDF

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA).

View Article and Find Full Text PDF

Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.

View Article and Find Full Text PDF

Graph Neural Networks (GNNs) have emerged as powerful tools for predicting material properties, yet they often struggle to capture many-body interactions and require extensive manual feature engineering. Here, we present EOSnet (Embedded Overlap Structures for Graph Neural Networks), a novel approach that addresses these limitations by incorporating Gaussian Overlap Matrix (GOM) fingerprints as node features within the GNN architecture. Unlike models that rely on explicit angular terms or human-engineered features, EOSnet efficiently encodes many-body interactions through orbital overlap matrices, providing a rotationally invariant and transferable representation of atomic environments.

View Article and Find Full Text PDF

Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.

View Article and Find Full Text PDF

In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively.

View Article and Find Full Text PDF

Objective: The process of glycolysis from blood collection to centrifugation impacts the diagnosis of gestational diabetes mellitus (GDM). However, the specific characteristics of the working environment in China and its influence on GDM diagnosis still need to be clarified.

Methods: Firstly, 15 pregnant women were recruited, and six specimens were collected from each in a fasting state.

View Article and Find Full Text PDF

Background: The mechanism underlying chronic drug-induced liver injury (DILI) remains unclear. Immune activation is a common feature of DILI progression and is closely associated with metabolism. We explored the immunometabolic profile of chronic DILI and the potential mechanism of chronic DILI progression.

View Article and Find Full Text PDF

Immunotherapy has revolutionized cancer treatment, making it a challenge to noninvasively monitor immune infiltration. Metabolic reprogramming in cancers, including hepatocellular carcinoma (HCC), is closely linked to immune status. In this study, we aimed to evaluate the ability of carbon-11 acetate (C-acetate) and fluorine-18 fluorodeoxyglucose (F-FDG) PET/CT findings in predicting overall survival (OS) and immune infiltration in HCC patients.

View Article and Find Full Text PDF

Expiratory central airway collapse is a degenerative tracheobronchial disease that is often overlooked because of its nonspecific clinical features. A man was admitted for evaluation of tracheal nodules. Following bronchoscopic biopsy, a significant increase in airway pressure occurred during anesthesia recovery.

View Article and Find Full Text PDF

Smith-Magenis syndrome (SMS) and Dandy-Walker malformation (DWM) are uncommon genetic conditions with nonspecific clinical features, which makes reaching a definitive diagnosis challenging. We describe here, a 2-year-old girl who was diagnosed with SMS at the age of 12 months due to delayed growth and development. The child presented to hospital with acute heart failure and respiratory failure.

View Article and Find Full Text PDF

Experts and scholars from various nations have proposed studying low Earth orbit (LEO) satellite signals as the space-based signals of opportunity (SOPs) for navigation and positioning. This method serves as a robust alternative in environments where global navigation satellite systems (GNSS) are unavailable or compromised, providing users with high-precision, anti-interference, secure, and dependable backup navigation solutions. The rapid evolution of LEO communication constellations has spurred the development of SOPs positioning technology using LEO satellites.

View Article and Find Full Text PDF

Unmanned aerial vehicles (UAVs) furnished with computational servers enable user equipment (UE) to offload complex computational tasks, thereby addressing the limitations of edge computing in remote or resource-constrained environments. The application of value decomposition algorithms for UAV trajectory planning has drawn considerable research attention. However, existing value decomposition algorithms commonly encounter obstacles in effectively associating local observations with the global state of UAV clusters, which hinders their task-solving capabilities and gives rise to reduced task completion rates and prolonged convergence times.

View Article and Find Full Text PDF

Bridge expansion joints are critical components that accommodate the movement of a bridge caused by temperature fluctuations, concrete shrinkage, and vehicular loads. Analyzing the spatiotemporal deformation of these expansion joints is essential for monitoring bridge safety. This study investigates the deformation characteristics of Hongtang Bridge in Fuzhou, China, using synthetic aperture radar interferometry (InSAR).

View Article and Find Full Text PDF

Remote sensing change detection (RSCD), which utilizes dual-temporal images to predict change locations, plays an essential role in long-term Earth observation missions. Although many deep learning based RSCD models perform well, challenges remain in effectively extracting change information between dual-temporal images and fully leveraging interactions between their feature maps. To address these challenges, a constraint- and interaction-based network (CINet) for RSCD is proposed.

View Article and Find Full Text PDF

Accurate and timely air quality forecasting is crucial for mitigating pollution-related hazards and protecting public health. Recently, there has been a growing interest in integrating visual data for air quality prediction. However, some limitations remain in existing literature, such as their focus on coarse-grained classification, single-moment estimation, or reliance on indirect and unintuitive information from visual images.

View Article and Find Full Text PDF

To address the issue of safe, orderly, and efficient operation for unmanned vehicles within the apron area in the future, a hardware framework of aircraft-vehicle-airfield collaboration and a trajectory planning method for unmanned vehicles on the apron were proposed. As for the vehicle-airfield perspective, a collaboration mechanism between flight support tasks and unmanned vehicle departure movement was constructed. As for the latter, a control mechanism was established for the right-of-way control of the apron.

View Article and Find Full Text PDF

This paper proposes a method for passive detection of autonomous underwater vehicle (AUV) wakes using a cilium-inspired wake sensor (CIWS), which can be used for the detection and tracking of AUVs. First, the characteristics of the CIWS and its working principle for detecting underwater flow fields are introduced. Then, a flow velocity sensor is used to measure the flow velocities of the "TS MINI" AUV's wake at different positions, and a velocity field model of the "TS MINI" AUV's wake is established.

View Article and Find Full Text PDF