Answering complex First-Order Logic (FOL) query plays a vital role in multi-hop knowledge graph (KG) reasoning. Geometric methods have emerged as a promising category of approaches in this context. However, existing best-performing geometric query embedding (QE) model is still up against three-fold potential problems: (i) underutilization of embedding space, (ii) overreliance on angle information, (iii) uncaptured hierarchy structure.
View Article and Find Full Text PDFSpatiotemporal activity prediction aims to predict user activities at a particular time and location, which is applicable in city planning, activity recommendations, and other domains. The fundamental endeavor in spatiotemporal activity prediction is to model the intricate interaction patterns among users, locations, time, and activities, which is characterized by higher-order relations and heterogeneity. Recently, graph-based methods have gained popularity due to the advancements in graph neural networks.
View Article and Find Full Text PDF