Applying artificial intelligence techniques to flexibly model the binding between the ligand and protein has attracted extensive interest in recent years, but their applicability remains improved. In this study, we have developed CarsiDock-Flex, a novel two-step flexible docking paradigm that generates binding poses directly from predicted structures. CarsiDock-Flex consists of an equivariant deep learning-based model termed CarsiInduce to refine ESMFold-predicted protein pockets with the induction of specific ligands and our existing CarsiDock algorithm to redock the ligand into the induced binding pockets.
View Article and Find Full Text PDFReliable molecular property prediction is essential for various scientific endeavors and industrial applications, such as drug discovery. However, the data scarcity, combined with the highly non-linear causal relationships between physicochemical and biological properties and conventional molecular featurization schemes, complicates the development of robust molecular machine learning models. Self-supervised learning (SSL) has emerged as a popular solution, utilizing large-scale, unannotated molecular data to learn a foundational representation of chemical space that might be advantageous for downstream tasks.
View Article and Find Full Text PDFEnzymes are ubiquitous catalysts with enormous application potential in biomedicine, green chemistry, and biotechnology. However, accurately predicting whether a molecule serves as a substrate for a specific enzyme, especially for novel entities, remains a significant challenge. Compared with traditional experimental methods, computational approaches are much more resource-efficient and time-saving, but they often compromise on accuracy.
View Article and Find Full Text PDFProteins govern most biological functions essential for life, and achieving controllable protein editing has made great advances in probing natural systems, creating therapeutic conjugates, and generating novel protein constructs. Recently, machine learning-assisted protein editing (MLPE) has shown promise in accelerating optimization cycles and reducing experimental workloads. However, current methods struggle with the vast combinatorial space of potential protein edits and cannot explicitly conduct protein editing using biotext instructions, limiting their interactivity with human feedback.
View Article and Find Full Text PDFThe generation of three-dimensional (3D) molecules based on target structures represents a cutting-edge challenge in drug discovery. Many existing approaches often produce molecules with invalid configurations, unphysical conformations, suboptimal drug-like qualities, limited synthesizability, and require extensive generation times. To address these challenges, we present 3DSMILES-GPT, a fully language-model-driven framework for 3D molecular generation that utilizes tokens exclusively.
View Article and Find Full Text PDFDespite the significant potential of generative models, low synthesizability of many generated molecules limits their real-world applications. In response to this issue, we develop ClickGen, a deep learning model that utilizes modular reactions like click chemistry to assemble molecules and incorporates reinforcement learning along with inpainting technique to ensure that the proposed molecules display high diversity, novelty and strong binding tendency. ClickGen demonstrates superior performance over the other reaction-based generative models in terms of novelty, synthesizability, and docking conformation similarity for existing binders targeting the three proteins.
View Article and Find Full Text PDF3D structure-based molecular generation is a successful application of generative AI in drug discovery. Most earlier models follow an atom-wise paradigm, generating molecules with good docking scores but poor molecular properties (like synthesizability and drugability). In contrast, fragment-wise generation offers a promising alternative by assembling chemically viable fragments.
View Article and Find Full Text PDFProteolysis-targeting chimeras (PROTACs) are drugs designed to degrade target proteins via the ubiquitin-proteasome system. With the application of computational biology/chemistry technique in drug design, numerous computer-aided drug design and artificial intelligence (AI)-driven drug design (CADD/AIDD) methods have recently emerged to facilitate the development of PROTAC drugs. We systematically review the role of in silico tools in PROTAC drug design, emphasizing how computational software can model PROTAC action and structure, predict activity, and assist in molecule design.
View Article and Find Full Text PDFThe integration of deep learning-based molecular generation models into drug discovery has garnered significant attention for its potential to expedite the development process. Central to this is lead optimization, a critical phase where existing molecules are refined into viable drug candidates. As various methods for deep lead optimization continue to emerge, it is essential to classify these approaches more clearly.
View Article and Find Full Text PDFProteolysis-targeting chimera (PROTAC) is an emerging therapeutic technology that leverages the ubiquitin-proteasome system to target protein degradation. Due to its event-driven mechanistic characteristics, PROTAC has the potential to regulate traditionally non-druggable targets. Recently, AI-aided drug design has accelerated the development of PROTAC drugs.
View Article and Find Full Text PDFMolecular generation stands at the forefront of AI-driven technologies, playing a crucial role in accelerating the development of small molecule drugs. The intricate nature of practical drug discovery necessitates the development of a versatile molecular generation framework that can tackle diverse drug design challenges. However, existing methodologies often struggle to encompass all aspects of small molecule drug design, particularly those rooted in language models, especially in tasks like linker design, due to the autoregressive nature of large language model-based approaches.
View Article and Find Full Text PDFAnnotating active sites in enzymes is crucial for advancing multiple fields including drug discovery, disease research, enzyme engineering, and synthetic biology. Despite the development of numerous automated annotation algorithms, a significant trade-off between speed and accuracy limits their large-scale practical applications. We introduce EasIFA, an enzyme active site annotation algorithm that fuses latent enzyme representations from the Protein Language Model and 3D structural encoder, and then aligns protein-level information with the knowledge of enzymatic reactions using a multi-modal cross-attention framework.
View Article and Find Full Text PDFRetrosynthesis is a crucial task in drug discovery and organic synthesis, where artificial intelligence (AI) is increasingly employed to expedite the process. However, existing approaches employ token-by-token decoding methods to translate target molecule strings into corresponding precursors, exhibiting unsatisfactory performance and limited diversity. As chemical reactions typically induce local molecular changes, reactants and products often overlap significantly.
View Article and Find Full Text PDFProtein loop modeling is a challenging yet highly nontrivial task in protein structure prediction. Despite recent progress, existing methods including knowledge-based, ab initio, hybrid, and deep learning (DL) methods fall substantially short of either atomic accuracy or computational efficiency. To overcome these limitations, we present KarmaLoop, a novel paradigm that distinguishes itself as the first DL method centered on full-atom (encompassing both backbone and side-chain heavy atoms) protein loop modeling.
View Article and Find Full Text PDFAnalyzing drug-related interactions in the field of biomedicine has been a critical aspect of drug discovery and development. While various artificial intelligence (AI)-based tools have been proposed to analyze drug biomedical associations (DBAs), their feature encoding did not adequately account for crucial biomedical functions and semantic concepts, thereby still hindering their progress. Since the advent of ChatGPT by OpenAI in 2022, large language models (LLMs) have demonstrated rapid growth and significant success across various applications.
View Article and Find Full Text PDFThe optimization of therapeutic antibodies through traditional techniques, such as candidate screening via hybridoma or phage display, is resource-intensive and time-consuming. In recent years, computational and artificial intelligence-based methods have been actively developed to accelerate and improve the development of therapeutic antibodies. In this study, we developed an end-to-end sequence-based deep learning model, termed AttABseq, for the predictions of the antigen-antibody binding affinity changes connected with antibody mutations.
View Article and Find Full Text PDFArtificial intelligence (AI)-aided drug design has demonstrated unprecedented effects on modern drug discovery, but there is still an urgent need for user-friendly interfaces that bridge the gap between these sophisticated tools and scientists, particularly those who are less computer savvy. Herein, we present DrugFlow, an AI-driven one-stop platform that offers a clean, convenient, and cloud-based interface to streamline early drug discovery workflows. By seamlessly integrating a range of innovative AI algorithms, covering molecular docking, quantitative structure-activity relationship modeling, molecular generation, ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction, and virtual screening, DrugFlow can offer effective AI solutions for almost all crucial stages in early drug discovery, including hit identification and hit/lead optimization.
View Article and Find Full Text PDF