Using static and dynamic density functional theory (DFT) methods with a cluster model of [(LiCO)H], the mechanism and kinetics of proton transfer in lithium molten carbonate (MC) were investigated. The migration of proton prefers an inter-carbonate pathway with an energy barrier of 8.0 kcal/mol at the B3LYP/6-31 G(d,p) level, which is in good agreement with the value of 7.
View Article and Find Full Text PDFUsing density functional theory method, we have studied the oxygen dissociation in alkali molten carbonate at the B3LYP/6-31G(d) level. The calculated energies were then verified by MP4 and CCSD(T). A four-formula cluster (M2CO3)4, M = Li, Na, and K was used to describe the molten carbonate.
View Article and Find Full Text PDFIdentification of the existence of pyrocarbonate ion C2O5(2-) in molten carbonates exposed to a CO2 atmosphere provides key support for a newly established bi-ionic transport model that explains the mechanisms of high CO2 permeation flux observed in mixed oxide-ion and carbonate-ion conducting (MOCC) membranes containing highly interconnected three dimensional ionic channels. Here we report the first Raman spectroscopic evidence of C2O5(2-) as an active species involved in the CO2-transport process of MOCC membranes exposed to a CO2 atmosphere. The two new broad peaks centered at 1317 cm(-1) and 1582 cm(-1) are identified as the characteristic frequencies of the C2O5(2-) species.
View Article and Find Full Text PDF(18)O-isotope-labeling studies have led to the conclusion that there exist two major pathways for water oxidation catalyzed by dimeric ruthenium ions of the general type cis, cis-[L2Ru(III)(OH2)]2O(4+). We have proposed that both pathways involve concerted addition of H and OH fragments derived from H 2O to the complexes in their four-electron-oxidized states, i.e.
View Article and Find Full Text PDFThe diimide perylene motif exhibits a dramatic intensity reversal between the 0 --> 0 and 0 --> 1 vibronic bands upon pi-pi stacking; this distinct spectral property has previously been used to measure folding dynamics in covalently bound oligomers and synthetic biological hybrid foldamers. It is also used as a tool to assess organization of the pi-stacking, indicating the presence of H- or J-aggregation. The zeroth-order exciton model, often used to describe the optical properties of chromophoric aggregates, is solely a transition dipole coupling scheme, which ignores the explicit electronic structure of the system as well as vibrational coupling to the electronic transition.
View Article and Find Full Text PDFThe adsorption of H(2)O and its dissociation products, O, H, and OH, on Ag(100) has been studied using an ab initio embedding method. Results at different sites (atop, bridge, and hollow) are presented. The four-fold hollow site is found to be the most stable adsorption site for O, H, and OH, and the calculated adsorption energies are 87.
View Article and Find Full Text PDFTheoretical studies of CO adsorption on a two-layer Ag(100) film and on a two-layer Ag film on a MgO(100) support are reported. Ab initio calculations are carried at the configuration interaction level of theory using embedding methods to treat the metal-adsorbate region and the extended ionic solid. The metal overlayer is considered in two different structures: where Ag-Ag distances are equal to the value in the bulk solid, and for a slightly expanded lattice in which the Ag-Ag distances are equal to the O-O distance on the MgO(100) surface.
View Article and Find Full Text PDFThe highly strained (E,E)-1,3-cycloheptadiene was shown to be a minimum on the potential energy surface; two structural isomers were found at the MP2 level, but multiconfiguration self-consistent field calculations show that only one is a true minimum. The isomerization of (E,E)-1,3-cycloheptadiene was investigated through double bond rotation, and electrocyclic ring closure. The first pathway gives (E,Z)-1,3-cycloheptadiene, with a barrier of 7.
View Article and Find Full Text PDF