Publications by authors named "Changxi Yin"

Background: Brown planthopper (BPH; Nilaparvata lugens) is one of the most serious pests of rice in the world. Insect-resistant genetic engineering is a very effective technology to control BPH. The promoters and cis-regulatory elements inducible by plant-feeding insects are critical for genetic engineering of insect-resistant crops.

View Article and Find Full Text PDF
Article Synopsis
  • Mature tissue culture systems exist for japonica rice, but indica rice regeneration remains difficult.
  • This study identified quantitative trait loci (QTLs) related to the ability of rice callus to regenerate, particularly looking at plant regeneration rate (PRR) and total green plant rate (TGPR) in a specific rice population.
  • Three QTLs were found, including one on chromosome 3 that explains a significant portion of the variations in PRR and TGPR, and further testing showed that this QTL enhances callus regeneration by promoting shoot development.
View Article and Find Full Text PDF

Bertoni is grown worldwide as an important, natural sweetener resource plant. The yield of steviol glycosides (SVglys) is greatly influenced by continuous cropping. In this study, we collected the roots, rhizosphere soils, and bulk soils from 2 years of continuous cropping (Y2) and 8 years of continuous cropping (Y8).

View Article and Find Full Text PDF

The tubular-shaped unicellular extensions of plant epidermal cells known as root hairs are important components of plant roots and play crucial roles in absorbing nutrients and water and in responding to stress. The growth and development of root hair include, mainly, fate determination of root hair cells, root hair initiation, and root hair elongation. Phytohormones play important regulatory roles as signal molecules in the growth and development of root hair.

View Article and Find Full Text PDF

Rice ( L.) is one of the most important food crops, feeding half of the world's population. However, rice production is affected by cadmium (Cd) toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Ethylene and jasmonate are crucial for rice plants to adapt to salt stress, but their interaction in seminal root growth during this stress is not well understood.
  • The study found that salt (NaCl) triggers both ethylene and jasmonate biosynthesis, with ethylene promoting jasmonate production, which ultimately hinders root growth.
  • Jasmonate reduces root growth by decreasing the number of meristem cells and inhibiting cell elongation through down-regulation of specific growth-related genes.
View Article and Find Full Text PDF

Weeds are one of the main factors that affect the yield and quality of rice. The combination of glyphosate-resistant transgenic crops and glyphosate is regarded as an important strategy for weed management in modern agriculture. In this study, a codon-optimized glyphosate oxidase gene from a variant BceGO-B3S1 and a glyphosate-tolerant gene from the bacterium were transformed into an .

View Article and Find Full Text PDF

A few reports have indicated that a single gene confers resistance to bacterial blight, sheath blight and rice blast. In this study, we identified a novel disease resistance mutant gene, methyl esterase-like (osmesl) in rice. Mutant rice with T-DNA insertion displayed significant resistance to bacterial blight caused by Xanthomonas oryzae pv.

View Article and Find Full Text PDF

Rice grain yield is a complex trait determined by three components: panicle number, grain number per panicle (GNPP) and grain weight. GNPP is the major contributor to grain yield and is crucial for its improvement. GNPP is determined by a series of physiological and biochemical steps, including inflorescence development, formation of rachis branches such as primary rachis branches and secondary rachis branches, and spikelet specialisation (lateral and terminal spikelets).

View Article and Find Full Text PDF

Background: Weeds, diseases and pests pose serious threats to rice production and cause significant economic losses. Cultivation of rice varieties with resistance to herbicides, diseases and pests is believed to be the most economical and environmentally friendly method to deal with these problems.

Results: In this study, a highly efficient transgene stacking system was used to assembly the synthetic glyphosate-tolerance gene (I.

View Article and Find Full Text PDF

Rice ( L.) seedlings grown under nitrogen (N) deficiency conditions show a foraging response characterized by increased root length. However, the mechanism underlying this developmental plasticity is still poorly understood.

View Article and Find Full Text PDF

Strigolactones (SLs) are plant hormones that regulate diverse physiological processes including shoot elongation. However, little is known about the regulatory mechanism of SLs in rice shoot elongation. Our results demonstrate that defects in SL biosynthesis or signaling led to dwarfism, and the dwarf statures of SL-deficient mutant (d17) and SL-insensitive mutant (d14) were restored to wild-type (WT) by gibberellin (GA) treatment, indicating that their dwarfism was associated with decreased GA content or weakened GA sensitivity.

View Article and Find Full Text PDF

Cytokinins (CKs), a class of phytohormone, regulate root growth in a dose-dependent manner. A certain threshold content of CK is required for rapid root growth, but supraoptimal CK content inhibits root growth, and the mechanism of this inhibition remains unclear in rice. In this study, treatments of lovastatin (an inhibitor of CK biosynthesis) and kinetin (KT; a synthetic CK) were found to inhibit rice seminal root growth in a dose-dependent manner, suggesting that endogenous CK content is optimal for rapid growth of the seminal root in rice.

View Article and Find Full Text PDF

Seed germination plays important roles in the establishment of seedlings and their subsequent growth; however, seed germination is inhibited by salinity, and the inhibitory mechanism remains elusive. Our results indicate that NaCl treatment inhibits rice seed germination by decreasing the contents of bioactive gibberellins (GAs), such as GA and GA and that this inhibition can be rescued by exogenous bioactive GA application. To explore the mechanism of bioactive GA deficiency, the effect of NaCl on GA metabolic gene expression was investigated, revealing that expression of both GA biosynthetic genes and GA-inactivated genes was up-regulated by NaCl treatment.

View Article and Find Full Text PDF

Cytoplasmic male sterile (CMS) rice has been widely used for hybrid rice seed production in China. However, CMS rice suffers from undesirable flowering habits including scattered floret opening time (FOT), which causes different FOTs among parental rice plants and greatly reduces hybrid rice seed production. Little is known about the mechanism of scattered FOT in CMS rice.

View Article and Find Full Text PDF

The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence.

View Article and Find Full Text PDF

High temperature has adverse effects on rice yield and quality. The different influences of night high temperature (NHT) and day high temperature (DHT) on rice quality and seed protein accumulation profiles during grain filling in indica rice '9311' were studied in this research. The treatment temperatures of the control, NHT, and DHT were 28°C/20°C, 27°C/35°C, and 35°C/27°C, respectively, and all the treatments were maintained for 20 days.

View Article and Find Full Text PDF

Cytoplasmic male sterile (CMS) rice Zhenshan 97A (ZS97A) has been widely used in hybrid rice production in China. However, ZS97A suffers from serious panicle enclosure, which blocks normal pollination and greatly reduces seed production of hybrid rice. Little is known about the cause of panicle closure in ZS97A.

View Article and Find Full Text PDF

Elongation of rice internodes is one of the most important agronomic traits, which determines the plant height and underlies the grain yield. It has been shown that the elongation of internodes is under genetic control, and various factors are implicated in the process. Here, we report a detailed characterization of an elongated uppermost internode1 (eui1) mutant, which has been used in hybrid rice breeding.

View Article and Find Full Text PDF