Achiral dielectric nanostructures provide an efficient method for discriminating left- and right-circularly polarized photons, leveraging the photothermoelectric effect.
View Article and Find Full Text PDFThe development of luminescent organic radicals has resulted in materials with excellent optical properties for near-infrared emission. Applications of light generation in this range span from bioimaging to surveillance. Although the unpaired electron arrangements of radicals enable efficient radiative transitions within the doublet-spin manifold in organic light-emitting diodes, their performance is limited by non-radiative pathways introduced in electroluminescence.
View Article and Find Full Text PDFLight-emitting diodes (LEDs) based on metal halide perovskites (PeLEDs) with high colour quality and facile solution processing are promising candidates for full-colour and high-definition displays. Despite the great success achieved in green PeLEDs with lead bromide perovskites, it is still challenging to realize pure-red (620-650 nm) LEDs using iodine-based counterparts, as they are constrained by the low intrinsic bandgap. Here we report efficient and colour-stable PeLEDs across the entire pure-red region, with a peak external quantum efficiency reaching 28.
View Article and Find Full Text PDFEfficient photovoltaic devices must be efficient light emitters to reach the thermodynamic efficiency limit. Here, we present a promising prospect of perovskite photovoltaics as bright emitters by harnessing the significant benefits of photon recycling, which can be practically achieved by suppressing interfacial quenching. We have achieved radiative and stable perovskite photovoltaic devices by the design of a multiple quantum well structure with long (∼3 nm) organic spacers with oleylammonium molecules at perovskite top interfaces.
View Article and Find Full Text PDFPerovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs). However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications.
View Article and Find Full Text PDFFast diffusion of charge carriers is crucial for efficient charge collection in perovskite solar cells. While lateral transient photoluminescence microscopies have been popularly used to characterize charge diffusion in perovskites, there exists a discrepancy between low diffusion coefficients measured and near-unity charge collection efficiencies achieved in practical solar cells. Here, we reveal hidden microscopic dynamics in halide perovskites through four-dimensional (directions x, y and z and time t) tracking of charge carriers by characterizing out-of-plane diffusion of charge carriers.
View Article and Find Full Text PDFMetal halide perovskites are attracting a lot of attention as next-generation light-emitting materials owing to their excellent emission properties, with narrow band emission. However, perovskite light-emitting diodes (PeLEDs), irrespective of their material type (polycrystals or nanocrystals), have not realized high luminance, high efficiency and long lifetime simultaneously, as they are influenced by intrinsic limitations related to the trade-off of properties between charge transport and confinement in each type of perovskite material. Here, we report an ultra-bright, efficient and stable PeLED made of core/shell perovskite nanocrystals with a size of approximately 10 nm, obtained using a simple in situ reaction of benzylphosphonic acid (BPA) additive with three-dimensional (3D) polycrystalline perovskite films, without separate synthesis processes.
View Article and Find Full Text PDFA comprehensive study of the optical properties of CsPbBr perovskite multiple quantum wells (MQW) with organic barrier layers is presented. Quantum confinement is observed by a blue-shift in absorption and emission spectra with decreasing well width and agrees well with simulations of the confinement energies. A large increase of emission intensity with thinner layers is observed, with a photoluminescence quantum yield up to 32 times higher than that of bulk layers.
View Article and Find Full Text PDFEfficient external radiation is essential for solar cells to achieve high power conversion efficiency (PCE). The classical limit of 1/2 (, refractive index) for electroluminescence quantum efficiency (ELQE) has recently been approached by perovskite solar cells (PSCs). Photon recycling (PR) and light scattering can provide an opportunity to surpass this limit.
View Article and Find Full Text PDFDespite remarkable progress, the performance of lead halide perovskite solar cells fabricated in an inverted structure lags behind that of standard architecture devices. Here, we report on a dual interfacial modification approach based on the incorporation of large organic cations at both the bottom and top interfaces of the perovskite active layer. Together, this leads to a simultaneous improvement in both the open-circuit voltage and fill factor of the devices, reaching maximum values of 1.
View Article and Find Full Text PDFThe success of metal halide perovskites in photovoltaic and light-emitting diodes (LEDs) motivates their application as a solid-state thin-film laser. Various perovskites have shown optically pumped stimulated emission of lasing and amplified spontaneous emission (ASE), yet the ultimate goal of electrically pumped stimulated emission has not been achieved. As an essential step toward this goal, here, a perovskite diode structure that simultaneously exhibits stable operation at high current density (≈1 kA cm ) and optically excited ASE (with a threshold of 180 µJ cm ) is reported.
View Article and Find Full Text PDFCompared to organic emitters, perovskite materials generally have a small Stokes shift and correspondingly large re-absorption of dipole emission. Classical optical modelling methods ignoring re-absorption do not provide an adequate description of the observed light emission properties. Here, optical modelling methods and design rules for perovskite light-emitting diodes are presented.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2020
Metallic thin films often exhibit poor mechanical robustness, which makes them unsuitable for use as electrodes in flexible and stretchable electronic devices. This prompted us to investigate the effect of creating a pattern of nanoholes in a metallic thin film to its mechanical and electrical properties. The adoption of nanonetwork structures is shown to confer significantly improved bendability to the films, with a change in electrical resistance of only 21% after 10 000 bending cycles, under a bending strain of 6.
View Article and Find Full Text PDFPerovskite light-emitting diodes have recently broken the 20% barrier for external quantum efficiency. These values cannot be explained with classical models for optical outcoupling. Here, we analyse the role of photon recycling (PR) in assisting light extraction from perovskite light-emitting diodes.
View Article and Find Full Text PDFMicroalgal photosynthesis is a promising solar energy conversion process to produce high concentration biomass, which can be utilized in the various fields including bioenergy, food resources, and medicine. In this research, we study the optical design rule for microalgal cultivation systems, to efficiently utilize the solar energy and improve the photosynthesis efficiency. First, an organic luminescent dye of 3,6-Bis(4'-(diphenylamino)-1,1'-biphenyl-4-yl)-2,5-dihexyl-2,5-dihydropyrrolo3,4-c pyrrole -1,4-dione (D1) was coated on a photobioreactor (PBR) for microalgal cultivation.
View Article and Find Full Text PDFA novel approach to fabricate flexible organic solar cells is proposed without indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) using junction-free metal nanonetworks (NNs) as transparent electrodes. The metal NNs are monolithically etched using nanoscale shadow masks, and they exhibit excellent optoelectronic performance. Furthermore, the optoelectrical properties of the NNs can be controlled by both the initial metal layer thickness and NN density.
View Article and Find Full Text PDFMicroalga is a promising biomass feedstock to restore the global carbon balance and produce sustainable bioenergy. However, the present biomass productivity of microalgae is not high enough to be marketable mainly because of the inefficient utilization of solar energy. Here, we study optical engineering strategies to lead to a breakthrough in the biomass productivity and photosynthesis efficiency of a microalgae cultivation system.
View Article and Find Full Text PDFWe investigate the arrangement of donor molecules in vacuum-deposited bulk heterojunction (BHJ) 1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane (TAPC):C-based organic solar cells (OSCs). Even a low dose of donors (∼10%) forms columnar structures that provide pathways for efficient hole transport in the BHJ layer; however, these structures disappear at donor concentrations below 10%, generating disconnected and isolated hole pathways. The formation of columnar donor structures is confirmed by the contrast of the contact potential difference, measured by Kelvin probe force microscopy, and by the trap-assisted charge injection at low donor concentrations.
View Article and Find Full Text PDFBandgap tunability and broadband absorption make quantum-dot (QD) photovoltaic cells (PVs) a promising candidate for future solar energy conversion systems. Approaches to improving the electrical properties of the active layer increase efficiency in part. The present study focuses on optical room for enhancement in QD PVs over wide spectrum in the near-infrared (NIR) region.
View Article and Find Full Text PDFThis paper reports the distinct roles of Au and Ag nanoparticles (NPs) in organic light-emitting diodes (OLEDs) depending on their sizes. Au and Ag NPs that are 40 and 50 nm in size, respectively, are the most effective for enhancing the performance of green OLEDs. The external quantum efficiencies (EQEs) of green OLEDs doped with Au and Ag NPs (40 and 50 nm, respectively) are improved by 29.
View Article and Find Full Text PDFIn this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2016
Here, we demonstrate that chemical reduction of oxide layers on metal nanostructures fuses junctions at nanoscale to improve the opto-electrical performance, and to ensure environmental stability of the interconnected nanonetwork. In addition, the reducing reaction lowers the adhesion force between metal nanostructures and substrates, facilitating the detachment of them from substrates. Detached metal nanonetworks can be easily floated on water and transferred onto various substrates including hydrophobic, floppy, and curved surfaces.
View Article and Find Full Text PDFWe have investigated the effects of a directly nanopatterned active layer on the electrical and optical properties of inverted polymer solar cells (i-PSCs). The capillary force in confined molds plays a critical role in polymer crystallization and phase separation of the film. The nanoimprinting process induced improved crystallization and multidimensional chain alignment of polymers for more effective charge transfer and a fine phase-separation between polymers and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) to favor exciton dissociation and increase the generation rate of charge transfer excitons.
View Article and Find Full Text PDF