Shipping emissions have been considered a significant source of air pollution in the cities along the Yangtze River, with severe impacts on the climate and human health. This study created a complete annual ship emission inventory for the middle reaches of the Yangtze River and assessed its impact on air quality on a regional scale. To estimate the complete emissions, 9 main engine power regression models for different ship types were created to handle those vessels with absent main power data, and a high spatial-temporal resolution annual emission inventory was developed with the activity-based method combined with Automatic Identification System (AIS) data of the full year of 2018.
View Article and Find Full Text PDFFor the navigation of an unmanned surface vehicle (USV), detection and recognition of the water-shore-line (WSL) is an important part of its intellectualization. Current research on this issue mainly focuses on the straight WSL obtained by straight line fitting. However, the WSL in the image acquired by boat-borne vision is not always in a straight line, especially in an inland river waterway.
View Article and Find Full Text PDFRobust detection and recognition of water surfaces are critical for autonomous navigation of unmanned surface vehicles (USVs), since any none-water region is likely an obstacle posing a potential danger to the sailing vehicle. A novel water region visual detection method is proposed in this paper. First, the input image pixels are clustered into different regions and each pixel is assigned a label tag and a confidence value by adaptive multistage segmentation algorithm.
View Article and Find Full Text PDFIn order to monitor and manage vessels in channels effectively, identification and tracking are very necessary. This work developed a maritime unmanned aerial vehicle (Mar-UAV) system equipped with a high-resolution camera and an Automatic Identification System (AIS). A multi-feature and multi-level matching algorithm using the spatiotemporal characteristics of aerial images and AIS information was proposed to detect and identify field vessels.
View Article and Find Full Text PDFPatterning micro-structures on highly hydrophobic surface by photolithography is usually inevitable for fabricating devices based on electrowetting effects. The key challenges for such photolithography processes are how to coat photoresist uniformly and maintain the hydrophobicity of the highly hydrophobic surface, which are usually two contradict aspects. Moreover, the patterned microstructure must adhere to the highly hydrophobic surface excellently, which is critical for device application.
View Article and Find Full Text PDFIn this paper, we report a comprehensive modeling and simulation study of constructing hybrid layered materials by alternately stacking MoS and WSe monolayers. Such hybrid MoS/WSe hetero-multilayers exhibited direct bandgap semiconductor characteristics with bandgap energy (E ) in a range of 0.45-0.
View Article and Find Full Text PDF