Publications by authors named "Changsheng Jin"

China's lakes are plagued by cadmium (Cd) pollution. Dissolved organic matter (DOM) significantly regulates Cd(II) transport properties at the sediment-water interface. Understanding the effects of different DOM components on the transportation properties of Cd(II) at the sediment-water interface is essential.

View Article and Find Full Text PDF

Sb-resistant strains can detoxify antimony through metabolic mechanisms such as oxidation and affect the migration, transformation, and ultimate fate of antimony in the environment. In this study, a strain of Sb-resistant fungi, Rhodotorula glutinis sp. Strain J5, was isolated from Xikuangshan mine and its growth characteristics, gene expression differences, and functional annotation under Sb(III) stress were further investigated to reveal the mechanism of resistance to Sb(III).

View Article and Find Full Text PDF

Dissolved organic matter (DOM) is a crucial component of natural sediments that alters Cd sequestration. Nevertheless, how different types of DOM fuel Cd mobilization in Mn-rich sediments has not been elucidated. In the present study, four typical DOM, fluvic acid (FA), bovine serum albumin (BSA), sodium alginate (SA), and sodium dodecyl benzene sulfonate (SDBS), were used to amend Cd-contaminated sediment to study their effects on Cd/Mn biotransformation and microbial community response.

View Article and Find Full Text PDF

In sediment environments, manganese (Mn) minerals have high dissolved organic matter (DOM) affinities, and could regulate the changes of DOM constituents and reactivity by fractionation. However, the effects of DOM fractionation by Mn minerals on the contaminant behaviors remain unclear. Herein, the transformations of mineral phases, DOM properties, and Cd(II) binding characteristics to sediment DOM before and after adsorption by four Mn oxides (δ-MnO, β-MnO, γ-MnOOH, and MnO) were investigated using multi-spectroscopic tools.

View Article and Find Full Text PDF

Manganese oxide minerals (MnOs) are major controls on cadmium (Cd) mobility and fate in the environment. However, MnOs are commonly coated with natural organic matter (OM), and the role of this coating in the retention and availability of harmful metals remains unclear. Herein, organo-mineral composites were synthesized using birnessite (BS) and fulvic acid (FA), during coprecipitation with BS and adsorption to preformed BS with two organic carbon (OC) loadings.

View Article and Find Full Text PDF

The characteristics and sources of DOM in sediments are significantly affected by fluctuations in lake water levels. However, the impact of spatial differences on water levels remain unclear. Here, 36 sediment samples were collected from the flood passage and coastal beach of East Dongting Lake.

View Article and Find Full Text PDF

Investigating the influence mechanism of drying-wetting cycles on the availability and mobility of heavy metals in sediment from the perspective of the molecular composition of dissolved organic matter (DOM) may gain a new understanding, but little current information exists. Here, we used spectral technologies, high-resolution mass spectrometry, and elemental stoichiometry method to trace the change rules of the molecular composition of DOM in the riparian sediment of the river. Results showed that the drying-wetting cycles could benefit the degradation of labile fractions (e.

View Article and Find Full Text PDF

Cd pollution in sediments poses severe threats to environmental safety and human health. Mn oxides have potential merit for the remediation of Cd pollution in sediment but have not received enough attention. Although Mn oxides have proven effective as adsorbents for removing heavy metals from water/wastewater, the performance and the underlying mechanism of Cd immobilization in sediments by Mn oxides remain unclear.

View Article and Find Full Text PDF

Understanding the environmental behavior of biochar-derived dissolved organic matter (BDOM) is crucial for promoting the extensive utilization of biochar and meeting the carbon neutrality targets. However, limited studies focused on the binding mechanism of protons and Cd with DOM released from biochar produced at different pyrolysis temperatures. By combining excitation-emission matrix spectroscopy and parallel factor analysis, we found that the humic-like fluorophores in BDOM had higher aromaticity, molecular weight, and contents of carboxylic and phenolic groups relative to the protein-like fluorophores.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) or iron/manganese (hydro)oxides were important factors in the migration of Cd in sediments of wetlands. DOM and Fe oxides simultaneously affect the longitudinal and transverse migration of Cd in wetlands sediments of plants was still unclear. In this study, a 14-day rhizobox experiment was conducted and the result showed that the rhizosphere effect of Cd migration was only limited to the upper layer of sediments (- 2 to - 4 cm).

View Article and Find Full Text PDF

The adsorption of heavy metals by suspended sediment particles is a key process in the migration of heavy metals in lakes and is affected by various environmental conditions. To reveal the effects and mechanisms of dissolved organic matter (DOM) on the adsorption of copper ions by suspended sediment particles, a Cu(Ⅱ) adsorption test was conducted through a laboratory simulation test. The results showed that DOM promoted the adsorption of Cu(Ⅱ) onto the suspended particles.

View Article and Find Full Text PDF

Sediments are the major sinks for Cd(Ⅱ) in the aquatic environment. Here, the detailed binding mechanisms and effects of environmental factors on Cd(Ⅱ) adsorption onto lake sediment were tested by a batch of adsorption and characteristic experiments. Sediment samples and sediment-Cd complexes were characterized using Scanning electron microscopy, Energy dispersive spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction spectral analyses.

View Article and Find Full Text PDF

The properties of phosphate in lakes and their ability to cause eutrophication have been well studied; however, the effects of phosphate on the environmental behavior of other substances in lakes have been ignored. Dissolved organic matter (DOM) and heavy metals may coexist with phosphate in lakes. Herein, the mechanisms underlying the influence of phosphate on heavy metals complexation with DOM were investigated using multi-spectroscopic tools.

View Article and Find Full Text PDF

The precipitation of Cu(II) by phosphate and the influence of dissolved organic matter (DOM) on the precipitation are essential for the fate of Cu(II) in aquatic environments. In this study, the influence of DOM on the reaction of phosphate with Cu(II) was investigated. Here, 51.

View Article and Find Full Text PDF

How to effectively remove excess Sb(III) in the water environment by biosorption is receiving close attention in the international scientific community. To obtain the maximum biosorption efficiency, response surface methodology (RSM) was employed to optimize a total of 13 factors for biosorption of Sb(III) onto living Rhodotorula mucilaginosa DJHN070401. The mechanism of biosorption and bioaccumulation was also studied.

View Article and Find Full Text PDF