Publications by authors named "Changquan Shi"

Article Synopsis
  • * Polyetheretherketone (PEEK) stands out as a promising replacement due to its excellent mechanical properties, biocompatibility, and compatibility with medical imaging techniques.
  • * This review focuses on PEEK's pros and cons in dental implants, evaluates efforts to improve its performance, and discusses its future potential in the field.
View Article and Find Full Text PDF

The survival outcomes of patients with chest wall sarcomas (CWS) were evaluated after receiving wide excision and chest wall reconstruction by using three-dimensional printed (3DP) implants. The survival outcomes evaluating the effect of 3DP implants for chest wall reconstruction is lacking. Here, forty-nine patients with CWS underwent radical wide excision and chest wall reconstruction using 3DP implants.

View Article and Find Full Text PDF

Three-dimensional printing (3DP) technology is suitable for manufacturing personalized orthopedic implants for reconstruction surgery. Compared with traditional titanium, polyether-ether-ketone (PEEK) is the ideal material for 3DP orthopedic implants due to its various advantages, including thermoplasticity, thermal stability, high chemical stability, and radiolucency suitable elastic modulus. However, it is challenging to develop a well-designed method and manufacturing technique to meet the clinical needs because it requires elaborate details and interplays with clinical work.

View Article and Find Full Text PDF

Polyether-ether-ketone (PEEK) is believed to be the next-generation biomedical material for orthopaedic implants that may replace metal materials because of its good biocompatibility, appropriate mechanical properties and radiolucency. Currently, some PEEK implants have been used successfully for many years. However, there is no customised PEEK orthopaedic implant made by additive manufacturing licensed for the market, although clinical trials have been increasingly reported.

View Article and Find Full Text PDF

Compared with CAD/CAM, fused deposition modeling (FDM) 3D printing technology is simple and safe to operate and has a low cost and high material utilization rate; thus, it is widely used. The present investigation aimed to evaluate the mechanical properties and fit of polyetheretherketone (PEEK) removable partial dentures (RPDs) constructed by FDM. We analyzed mechanical properties of PEEK samples prepared by FDM, milling, or injection molding.

View Article and Find Full Text PDF

The aim of this study was to investigate and discuss the efficacy of 3D-printed PEEK implants in personalized reconstruction of mandibular segmental defects. This study was a single-center case series. Six patients who underwent mandibular reconstruction with a custom-made 3D-printed PEEK implant were enrolled.

View Article and Find Full Text PDF