Publications by authors named "Changming Mao"

Micro-sized alloy type germanium (Ge) anodes possess appealing properties for next-generation lithium ions batteries, such as desirable capacity, easy accessibility and greater tapdensity. Nevertheless, volume expansion accompanied by severe pulverization and continuous growth of solid electrolyte interlayer (SEI) still represent fundamental obstacles to their practical applications. Herein, we propose a fresh strategy of constructing robust bond linkage between boron-based coating layer and lithiated polyacrylic acid (PAALi) binder to circumvent the pulverization problems of Ge anodes.

View Article and Find Full Text PDF

Mesocarbon microbeads (MCMB) are highly desirable as anode materials for rechargeable potassium ion batteries (PIBs) due to their commercially availability, high stability and low-cost. However, their charge storage and interfacial mechanisms are still unclear. In this work, the intercalation mechanisms and the solid-electrolyte-interphase (SEI) formation of the MCMB in four different electrolytes is comprehensively studied.

View Article and Find Full Text PDF

Metal sulfides have attracted tremendous research interest for developing high-performance electrodes for potassium-ion batteries (PIBs) for their high theoretical capacities. Nevertheless, the practical application of metal sulfides in PIBs is still unaddressed due to their intrinsic shortcomings of low conductivity and severe volume changes during the potassiation/depotassiation process. Herein, robust FeS/C hybrid nanocages reinforced by defect-rich MoS nanosheets (FeS/C@d-MoS) were designed, which possess abundant multichannel and active sites for potassium-ion transportation and storage.

View Article and Find Full Text PDF

The 3D flowerlike iron sulfide (F-FeS) is successfully synthesized via a facile one-step sulfurization process, and the electrochemical properties as anode materials for lithium ion batteries (LIBs) are investigated. Compared with bulk iron sulfide, we find that the unique structural features, overall flowerlike structure, composed of several dozen nanopetals and numerous small size iron sulfide particles embedded within the fine nanopetals, and hierarchical pore structure features provide signification improvements in lithium storage performance, with a high-rate discharge capacity of 779.0 mAh g at a rate of 5 A g, due to effectively alleviating the volume expansion during the lithiation/delithiation process, and shorting the diffusion length of both lithium ion and electron.

View Article and Find Full Text PDF

Graphene oxide/ferroferric oxide/polyethylenimine (GO/FeO/PEI) nanocomposites were synthesized by an in situ growth of FeO nanoparticles on GO sheets, and then modified by PEI. The GO/FeO/PEI nanocomposites showed extremely high removal efficiency for anionic dye Congo Red (CR) due to the positively charged PEI molecules (methylene blue was also tested but with low adsorption capacity due to its cationic property). The CR removal capacity was 574.

View Article and Find Full Text PDF

A sorbent for oil spill cleanup was prepared through a novel strategy by treating polyurethane sponges with silica sol and gasoline successively. The oil sorption capacity, oil/water selectivity, reusability and sorption mechanism of prepared sorbent were studied. The results showed that the prepared sorbent exhibited high sorption capacity and excellent oil/water selectivity.

View Article and Find Full Text PDF

In recent years, an intense interest has grown in the DNA logic gates having high potential for computation at literally the "nano-size" level. A limitation of traditional DNA logic gates is that each target strand hybridizes with only a single copy of the probe. This 1:1 hybridization radio limits the gain of the approach and thus its sensitivity.

View Article and Find Full Text PDF

A label-free multiplexed immunoassay strategy was proposed for the simultaneous detection of two tumor markers, carcinoembryonic antigen (CEA) and α-fetoprotein (AFP). Monoclonal antibody of CEA was co-immobilized with ferrocenecarboxylic acid (FCA) inside the channels of mesoporous silica (MPS) to prepare the label-free probe for CEA. Also, monoclonal antibody of AFP was co-immobilized with horseradish peroxidase (HRP) inside the channels of MPS to prepare the label-free probe for AFP by using o-phenylenediamine (OPD) and H(2)O(2) as the electrochemical substrates.

View Article and Find Full Text PDF

The distributing and changing characteristics and content of soil heavy metals was studied using methods of field survey and sampling, indoor analysis, and pollution index were used to investigate the soil environmental quality in the tea plantations of Changsha Baili Tea Zone. The results showed that the content of soil total Pb, Hg, Cd, Cr, As, Ni basically was in the soil background value, their averages were 42.7, 0.

View Article and Find Full Text PDF