High-internal-phase water-in-oil (W/O) emulsions generated in situ have garnered considerable attention as novel profile control systems. However, conventional emulsifiers are unreactive and poorly dispersed in water, necessitating large dosages and resulting in poor injectivity. In this study, we synthesized amphiphilic nanoparticles (SiO-NH-DAC NPs) containing amine and long-chain alkyl groups using a one-pot method and investigated the stabilized emulsion properties.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) is a highly contagious virus that poses a serious threat to the global pig industry. Despite extensive efforts, the mechanism underlying virus entry for PEDV remains elusive. In this study, we first identified PEDV-susceptible and non-susceptible cell lines by using PEDV spike pseudotyped vesicular stomatitis virus.
View Article and Find Full Text PDFAs unique building blocks for advancing optoelectronics, 2D semiconducting transition metal dichalcogenides have garnered significant attention. However, most previously reported MoS photodetectors respond only to visible light with limited absorption, resulting in a narrow spectral response and low sensitivity. Here, a surrounding homojunction MoS photodetector featuring localized p-type nitrogen plasma doping on the surface of n-type MoS while preserving a high-mobility underlying channel for rapid carrier transport is engineered.
View Article and Find Full Text PDFTwo-dimensional (2D) layered group-IV monochalcogenides with large surface-to-volume ratio and high surface activity make that their structural and optoelectronic properties are sensitive to air oxidation. Here, we report the utilization of oxidation-induced gradient doping to modulate electronic structures and optoelectronic properties of 2D group-IV monochalcogenides by using SnS nanoplates grown by physical vapor deposition as a model system. By a precise control of oxidation time and temperature, the structural transition from SnS to SnSO could be driven by the layer-by-layer oxygen doping and intercalation.
View Article and Find Full Text PDFThe description and analysis of chemical bonds have been difficult following the popularization of electronic structure calculations. Although many attempts have been made from the perspective of electronic structure, the sheer volume of information in the electronic structure has left contemporary chemical bond analysis methods grappling with an inescapable "Trilemma" where the model briefness, generality, and descriptiveness (descriptive power) cannot be obtained simultaneously. To push the generality and descriptiveness to their extremes, herein a general machine learning-based framework is introduced to compact chemical bonds into a detailed residue-by-residue "genome" with matched encoding/decoding tools.
View Article and Find Full Text PDFThe two-dimensional transition metal carbide/nitride family (MXenes) has garnered significant attention due to their highly customizable surface functional groups. Leveraging modern material science techniques, the customizability of MXenes can be enhanced further through the construction of associated heterostructures. As indicated by recent research, the MoCT/NiS heterostructure has emerged as a promising candidate exhibiting superior physical and chemical application potential.
View Article and Find Full Text PDFThe demand for miniaturized and integrated multifunctional devices drives the progression of high-performance infrared photodetectors for diverse applications, including remote sensing, air defense, and communications, among others. Nonetheless, infrared photodetectors that rely solely on single low-dimensional materials often face challenges due to the limited absorption cross-section and suboptimal carrier mobility, which can impair sensitivity and prolong response times. Here, through experimental validation is demonstrated, precise control over energy band alignment in a type-II van der Waals heterojunction, comprising vertically stacked 2D TaNiSe and the topological insulator BiSe, where the configuration enables polarization-sensitive, wide-spectral-range photodetection.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance.
View Article and Find Full Text PDFDue to the extensive genetic and antigenic variation in Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), as well as its rapid mutability and evolution, PRRS prevention and control can be challenging. An expeditious and sensitive neutralization assay for PRRSV is presented to monitor neutralizing antibodies (NAbs) in serum during vaccine research. Here, a PRRSV expressing eGFP was successfully rescued with reverse genetics based on the infectious clone HuN4-F112-eGFP which we constructed.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is a highly contagious and deadly virus that leads to high mortality rates in domestic swine populations. Although the envelope protein CD2v of ASFV has been implicated in immunomodulation, the molecular mechanisms underlying CD2v-mediated immunoregulation remain unclear. In this study, we generated a stable CD2v-expressing porcine macrophage (PAM-CD2v) line and investigated the CD2v-dependent transcriptomic landscape using RNA-seq.
View Article and Find Full Text PDFAs a member of the δ-coronavirus family, porcine deltacoronavirus (PDCoV) is a vital reason for diarrhea in piglets, which can contribute to high morbidity and mortality rates. Initially identified in Hong Kong in 2012, the virus has rapidly spread worldwide. During PDCoV infection, the virus employs evasion mechanisms to evade host surveillance, while the host mounts corresponding responses to impede viral replication.
View Article and Find Full Text PDFThe porcine epidemic diarrhea virus (PEDV) is a highly contagious and virulent enteric coronavirus that causes severe enteric disease in pigs worldwide. PEDV infection causes profound diarrhea, vomiting, and dehydration in pigs of all ages, resulting in high mortality rates, particularly among neonatal piglets. The spike glycoprotein (S) of PEDV plays a crucial role in binding to the host cell receptor and facilitating fusion between the viral and host membranes.
View Article and Find Full Text PDFPorcine epidemic diarrhea (PED) is an acute, highly infectious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV), which seriously endangers the healthy development of the pig industry. PEDV N protein is the most abundant viral structural protein, which can be combined with viral genomic RNA to form ribonucleoprotein complexes, thereby participating in the transcription and replication of the virus. However, how PEDV hijacks the host transcription translation system to promote viral proliferation remains unclear.
View Article and Find Full Text PDFStrong fluorescence and high catalytic activities cannot be achieved simultaneously due to conflicts in free electron utilization, resulting in a lack of bioactivity of most near-infrared-II (NIR-II) fluorophores. To circumvent this challenge, we developed atomically precise Au clusters with strong NIR-II fluorescence ranging from 950 to 1300 nm exhibiting potent enzyme-mimetic activities through atomic engineering to create active Cu single-atom sites. The developed AuCu clusters show 18-fold higher antioxidant, 90-fold higher catalase-like, and 3-fold higher superoxide dismutase-like activities than Au clusters, with negligible fluorescence loss.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) causes severe morbidity and mortality among newborn piglets. It significantly threatens the porcine industry in China and around the globe. To accelerate the developmental pace of drugs or vaccines against PEDV, a deeper understanding of the interaction between viral proteins and host factors is crucial.
View Article and Find Full Text PDFNear-infrared-II (NIR-II) imaging has shown great potential for monitoring the pathological progression and deep tissue imaging but is limited to present unmet NIR-II agent. Present fluorophores show a promising prospect for NIR-II imaging, but brightness and photostability are still highly challenging during real-time monitoring. In this work, atom-engineered NIR-II Au Cd clusters with ultrahigh brightness, stability, and photostability are developed via single atomic Cd doping.
View Article and Find Full Text PDFPorcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Classical Swine Fever Virus (CSFV) are two important pathogens, which cause serious impact on swine industry worldwide. In our previous research, rPRRSV-E2, the recombinant PRRSV expressing CSFV E2 protein, could provide sufficient protection against the lethal challenge of highly pathogenic PRRSV and CSFV, and could maintained genetically stable . Here, to evaluate the virulence reversion potential risk, rPRRSV-E2 had been continuously passaged , the stability of E2 expression and virulence of the passage viruses were analyzed.
View Article and Find Full Text PDFMacroautophagy/autophagy is a cellular degradation and recycling process that maintains the homeostasis of organisms. The protein degradation role of autophagy has been widely used to control viral infection at multiple levels. In the ongoing evolutionary arms race, viruses have developed various ways to hijack and subvert autophagy in favor of its replication.
View Article and Find Full Text PDFOwing to the large built-in field for efficient charge separation, heterostructures facilitate the simultaneous realization of a low dark current and high photocurrent. The lack of an efficient approach to engineer the depletion region formed across the interfaces of heterojunctions owing to doping differences hinders the realization of high-performance van der Waals (vdW) photodetectors. This study proposes a ferroelectric-controlling van der Waals photodetector with vertically stacked two-dimensional (2D) black phosphorus (BP)/indium selenide (In Se ) to realize high-sensitivity photodetection.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a contagious infectious disease with high lethality which continuously threatens the global pig industry causing huge economic losses. Currently, there are no commercially available vaccines or antiviral drugs that can effectively control ASF. The pathogen of ASF, ASF virus (ASFV) is a double-stranded DNA virus with a genome ranging from 170 to 193 kb and 151 to 167 open reading frames in various strains, which encodes 150-200 proteins.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2023
Uniaxial compressions in layered materials can change their electronic structures and properties. In this work, a bimetallic compound CuVPSis simulated by using Density Functional Theory (DFT) in the presence of uniaxial compressions. Our results clearly show vertical compressions could lead to anisotropic behaviors, which include the compression effect caused by interlayer compression and the anisotropy of intralayer stretching.
View Article and Find Full Text PDF