So far, most of the reported high-mobility conjugated polymers are p-type semiconductors. By contrast, the advances in high-mobility ambipolar polymers fall greatly behind those of p-type counterparts. Instead of unipolar p-type and n-type materials, ambipolar polymers, especially balanced ambipolar polymers, are potentially serviceable for easy-fabrication and low-cost complementary metal-oxide-semiconductor circuits.
View Article and Find Full Text PDFComprehensive investigations of crystal structures, electrical transport properties and theoretical simulations have been performed over a series of sulfur-bridged annulene-based donor-acceptor complexes with an alternate stacking motif. A remarkably high mobility, up to 1.57 cm(2) V(-1) s(-1) for holes and 0.
View Article and Find Full Text PDFTraditionally, it is believed that three-dimensional transport networks are preferable to those of lower dimensions. We demonstrate that inter-layer electronic couplings may result in a drastic decrease of charge mobilities by utilizing field-effect transistors (FET) based on two phases of titanyl phthalocyanine (TiOPc) crystals. The α-phase crystals with electronic couplings along two dimensions show a maximum mobility up to 26.
View Article and Find Full Text PDFAn anthracene derivative, 2,6-diphenyl anthracene (DPA), was successfully synthesized with three simple steps and a high yield. The compound was determined to be a durable high performing semiconductor with thin film device mobility over 10 cm(2) V(-1) s(-1). The efficient synthesis and high performance indicates its great potential in organic electronics.
View Article and Find Full Text PDFIn the present work, we explored the diameter selectivity of dynamic self-assembly for the single-strand DNA (ssDNA) encapsulation in double-walled nanotubes (DWNTs) via molecular dynamics simulation method. Moreover, the pulling out process was carried out by steered molecular dynamics simulations. Considering π-π stacking and solvent accessibility together, base-CNT binding should be strongest on a graphene sheet and weakest on the inner CNT surface.
View Article and Find Full Text PDFSteered molecular dynamics simulations are performed to explore the unfolding and refolding processes of CLN025, a 10-residue beta-hairpin. In unfolding process, when CLN025 is pulled along the termini, the force-extension curve goes back and forth between negative and positive values not long after the beginning of simulation. That is so different from what happens in other peptides, where force is positive most of the time.
View Article and Find Full Text PDF