New Re carbon nanodots with narrow size distribution, good water solubility and high cell membrane permeability were prepared from a herbal extract. They exhibited high inhibitory effects on renal cancer A498 cells and renal cell carcinoma. They could stimulate the production of ROS, induce mitochondrial dysfunction, and accelerate the release of intracellular calcium ions in the A498 cells.
View Article and Find Full Text PDFHost-defense peptides (HDPs) and their analogs hold significant potential for combating multidrug-resistant (MDR) bacterial infections. However, their clinical use has been hindered by susceptibility to proteases, high production costs, and cytotoxicity towards mammalian cells. Synthetic polymers with diverse topologies and compositions, designed to mimic HDPs, show promise for treating bacterial infections.
View Article and Find Full Text PDFPer- and poly-fluoroalkyl substances (PFAS) have gained widespread attention due to their adverse effects on health and environment. Developing efficient technology to capture PFAS from contaminated sources remains a great challenge. In this study, we introduce a type of reusable polymeric sorbent (PFPE-IEX + ) for rapid, efficient, and selective removal of multiple PFAS impurities from various contaminated water sources.
View Article and Find Full Text PDFInhalable nanomedicines are increasingly being developed to optimise the pharmaceutical treatment of respiratory diseases. Large lipid-based nanosystems at the forefront of the inhalable nanomedicines development pipeline, though, have a number of limitations. The objective of this study was, therefore, to investigate the utility of novel small lipidated sulfoxide polymers based on poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA) as inhalable drug delivery platforms with tuneable membrane permeability imparted by differential albumin binding kinetics.
View Article and Find Full Text PDFCancer theranostics that combines cancer diagnosis and therapy is a promising approach for personalized cancer treatment. However, current theranostic strategies suffer from low imaging sensitivity for visualization and an inability to target the diseased tissue site with high specificity, thus hindering their translation to the clinic. In this study, we have developed a tumor microenvironment-responsive hybrid theranostic agent by grafting water-soluble, low-fouling fluoropolymers to pH-responsive zeolitic imidazolate framework-8 (ZIF-8) nanoparticles by surface-initiated RAFT polymerization.
View Article and Find Full Text PDFCentral nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders.
View Article and Find Full Text PDFQuantum dots (QDs) of formamidinium lead triiodide (FAPbI ) perovskite hold great potential, outperforming their inorganic counterparts in terms of phase stability and carrier lifetime, for high-performance solar cells. However, the highly dynamic nature of FAPbI QDs, which mainly originates from the proton exchange between oleic acid and oleylamine (OAm) surface ligands, is a key hurdle that impedes the fabrication of high-efficiency solar cells. To tackle such an issue, here, protonated-OAm in situ to strengthen the ligand binding at the surface of FAPbI QDs, which can effectively suppress the defect formation during QD synthesis and purification processes is selectively introduced.
View Article and Find Full Text PDFEfficient removal of per- and polyfluoroalkyl substances (PFAS) from contaminated waters is urgently needed to safeguard public and environmental health. In this work, novel magnetic fluorinated polymer sorbents were designed to allow efficient capture of PFAS and fast magnetic recovery of the sorbed material. The new sorbent has superior PFAS removal efficiency compared with the commercially available activated carbon and ion-exchange resins.
View Article and Find Full Text PDFNon-thrombogenic surfaces for extracorporeal membrane oxygenation (ECMO) devices are important to increase their duration of usage and to enable long-term life support. However, the contact of blood with the hydrophobic synthetic ECMO membrane materials such as poly(4-methyl-1-pentene) (PMP) can activate the coagulation cascade, causing thrombosis and a series of consequent complications during ECMO operation. Targeting this problem, we proposed to graft highly hydrophilic sulfoxide polymer brushes onto the PMP surfaces via gamma ray irradiation-initiated polymerization to improve the hemocompatibility of the membrane.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
Biomacromolecules
September 2022
Rechargeable batteries paired with sodium metal anodes are considered to be one of the most promising high-energy and low-cost energy-storage systems. However, the use of highly reactive sodium metal and the formation of sodium dendrites during battery operation have caused safety concerns, especially when highly flammable liquid electrolytes are used. Here we design and develop solvent-free solid polymer electrolytes (SPEs) based on a perfluoropolyether-terminated polyethylene oxide (PEO)-based block copolymer for safe and stable all-solid-state sodium metal batteries.
View Article and Find Full Text PDFOral vaccine has attracted much interest, as it can stimulate both mucosal and systemic immunity with noninvasive and good patient compliance. However, the oral vaccine efficiency is strongly constrained by the low absorption of antigens in the small intestine due to the mucosal barriers. Physicochemical characteristics of nanoparticles (NPs) have strong effects on antigen mucosal penetration, helping to improve immune response.
View Article and Find Full Text PDFAmyloid aggregation is a ubiquitous form of protein misfolding underlying the pathologies of Alzheimer's disease (AD), Parkinson's disease (PD) and type 2 diabetes (T2D), three primary forms of human amyloid diseases. While much has been learned about the origin, diagnosis and management of these neurological and metabolic disorders, no cure is currently available due in part to the dynamic and heterogeneous nature of the toxic oligomers induced by amyloid aggregation. Here we synthesized beta casein-coated iron oxide nanoparticles (βCas IONPs) via a BPA-P(OEGA-b-DBM) block copolymer linker.
View Article and Find Full Text PDFThe applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with F magnetic resonance imaging, F positron emission tomography and ultrasound discussed as illustrative examples.
View Article and Find Full Text PDFAntifouling surfaces are important in a broad range of applications. An effective approach to antifouling surfaces is to covalently attach antifouling polymer brushes. This work reports the synthesis of a new class of antifouling polymer brushes based on highly hydrophilic sulfoxide polymers by surface-initiated photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization.
View Article and Find Full Text PDFA better understanding of the impact of molecular size and linkers is important for PEG-based hyperbranched polymers (HBPs) intended as tailored drug delivery vehicles. This study aimed to evaluate the effects of crosslinker chemistry (cleavable disulphide versus non-cleavable ethylene glycol methacrylate (EGDMA) linkers) and molecular weight within the expected size range for efficient renal elimination (22 vs. 48 kDa) on the intravenous pharmacokinetic and biodistribution properties of Zr-labelled HBPs in rats.
View Article and Find Full Text PDFPurpose: For patients with intractable cancer-related pain, administration of strong opioid analgesics and adjuvant agents by the intrathecal (i.t.) route in close proximity to the target receptors/ion channels, may restore pain relief.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2021
Biomimetic nanomaterials have attracted tremendous research interest in the past decade. We recently developed biomimetic core-shell nanoparticles - silica nanocapsules, using a designer dual-functional peptide SurSi under room temperature, neutral pH and without use of any toxic reagents or chemicals. The SurSi peptide is designed capable of not only stabilizing nanoemulsions because of its excellent surface activity, but also inducing the formation of silica through biosilicification at an oil-water interface.
View Article and Find Full Text PDFMinimizing the interaction of nanomedicines with the mononuclear phagocytic system (MPS) is a critical challenge for their clinical translation. Conjugating polyethylene glycol (PEG) to nanomedicines is regarded as an effective approach to reducing the sequestration of nanomedicines by the MPS. However, recent concerns about the immunogenicity of PEG highlight the demand of alternative low-fouling polymers as innovative coating materials for nanoparticles.
View Article and Find Full Text PDFNanotheranostics have been actively sought in precision nanomedicine in recent years. However, insufficient tumor accumulation and limited cell uptake often impede the nanotheranostic efficacy. Herein, pH-sensitive charge-reversible polymer-coated layered double hydroxide (LDH) nanohybrids are devised to possess long circulation in blood but reserve surface charges in the weakly acidic tumor tissue to re-expose therapeutic LDH nanoparticles for enhanced tumor accumulation and cell uptake.
View Article and Find Full Text PDFThe conjugation of hydrophilic polymers to proteins is an effective approach to prolonging their circulation time in the bloodstream and, hence, improving their delivery to the target region of interest. In this work, we report the synthesis of protein-polymer conjugates using a highly water-soluble sulfoxide-containing polymer, poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA), through a combination of "grafting-to" and "grafting-from" methods. Oligomeric MSEA was synthesized by conventional reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequently conjugated to lysozyme to produce a macromolecular chain transfer agent.
View Article and Find Full Text PDF