Conventional methods of drug design require compromise in the form of side effects to achieve sufficient efficacy because targeting drugs to specific organs remains challenging. Thus, new strategies to design organ-specific drugs that induce little toxicity are needed. Based on characteristic tissue niche-mediated drug distribution (TNMDD) and patterns of drug metabolism into specific intermediates, we propose a strategy of distribution- and metabolism-based drug design (DMBDD); through a physicochemical property-driven distribution optimization cooperated with a well-designed metabolism pathway, SH-337, a candidate potassium-competitive acid blocker (P-CAB), was designed.
View Article and Find Full Text PDFThe carboxylate anion has been used as a directing group to effect selective ortho-substituted derivatives 3 (>99:1 selectivity 50-80% yield). The solvent, base, and equivalents of base are the determining factors for the success of this reaction. The directing effect can be reversed by the appropriate use of phosphine ligands to prepare the para-substituted 4 selectively (ca.
View Article and Find Full Text PDFThe SARS coronavirus 3C-like proteinase is recognized as a potential drug design target for the treatment of severe acute respiratory syndrome. In the past few years, much work has been done to understand the catalytic mechanism of this target protein and to design its selective inhibitors. The protein exists as a dimer/monomer mixture in solution and the dimer was confirmed to be the active species for the enzyme reaction.
View Article and Find Full Text PDFA series of isatin derivatives were synthesized and tested against SARS CoV 3C-like protease. Substitutions at the N-1 and C-5 positions were examined to elucidate the differences in substrate binding sites of the rhinovirus 3C protease and SARS CoV 3C-like protease. Compound 5f shows significant inhibition with an IC(50) of 0.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 3C-like protease has been proposed to be a key target for structurally based drug design against SARS. The enzyme exists as a mixture of dimer and monomer, and only the dimer was considered to be active. In this report, we have investigated, using molecular dynamics simulation and mutational studies, the problems as to why only the dimer is active and whether both of the two protomers in the dimer are active.
View Article and Find Full Text PDFHuman nonpancreatic secreted phospholipase A2 (hnps PLA2) is considered to be an important drug target for antiinflammation therapy. We have established a new fluorescence assay by using 1-anilinonaphthalene-8-sulfonate (ANS) as an interfacial probe for hydrophobic environment detection. The fitted apparent k(cat)/K(m) of hnps PLA2 is 0.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2006
The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. Accurate determination of the dimer dissociation constant and the role of the N-finger (residues 1-7) will provide more insights into the enzyme catalytic mechanism of SARS 3CL proteinase. The dimer dissociation constant of the wild-type protein was determined to be 14.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2005
The synthesis of the human non-pancreatic secretory phospholipase A2 inhibitor (IC(50)=1.81+/-0.59 microM) is reported.
View Article and Find Full Text PDFJ Chem Inf Model
February 2005
The SARS coronavirus 3C-like proteinase is considered as a potential drug design target for the treatment of severe acute respiratory syndrome (SARS). Owing to the lack of available drugs for the treatment of SARS, the discovery of inhibitors for SARS coronavirus 3C-like proteinase that can potentially be optimized as drugs appears to be highly desirable. We have built a "flexible" three-dimensional model for SARS 3C-like proteinase by homology modeling and multicanonical molecular dynamics method and used the model for virtual screening of chemical databases.
View Article and Find Full Text PDFSARS 3C-like proteinase has been proposed to be a key enzyme for drug design against SARS. Lack of a suitable assay has been a major hindrance for enzyme kinetic studies and a large-scale inhibitor screen for SARS 3CL proteinase. Since SARS 3CL proteinase belongs to the cysteine protease family (family C3 in clan CB) with a chymotrypsin fold, it is important to understand the catalytic mechanism of SARS 3CL proteinase to determine whether the proteolysis proceeds through a general base catalysis mechanism like chymotrypsin or an ion pair mechanism like papain.
View Article and Find Full Text PDFThe 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. In order to understand the active form and the substrate specificity of the enzyme, we have cloned, expressed, and purified SARS 3C-like proteinase. Analytic gel filtration shows a mixture of monomer and dimer at a protein concentration of 4 mg/ml and mostly monomer at 0.
View Article and Find Full Text PDF