Publications by authors named "Changjing Bao"

Nonlinear photonics has unveiled new avenues for applications in metrology, spectroscopy, and optical communications. Recently, there has been a surge of interest in integrated platforms, attributed to their fundamental benefits, including compatibility with complementary metal-oxide semiconductor (CMOS) processes, reduced power consumption, compactness, and cost-effectiveness. This paper provides a comprehensive review of the key nonlinear effects and material properties utilized in integrated platforms.

View Article and Find Full Text PDF

χ-translated microcomb generation in microresonators that possess both χ and χ nonlinear responses opens the door for ultra-broadband integrated comb sources. The interplay between the second- and third-order nonlinearities within a fixed coupling coefficient fertilizes complicated cavity dynamics which is of paramount scientific and technological potential. However, this coupling coefficient can be drastically wavelength-dependent, which is lack of consideration in previous studies.

View Article and Find Full Text PDF

Beams carrying orbital angular momentum (OAM) have exhibited significant potential across various fields, such as metrology, image coding, and optical communications. High-performance broadband coherent OAM sources are critical to the operation of optical systems. The emission of dispersive waves facilitates the efficient transfer of energy to distant spectral domains while preserving the coherence among the generated frequency components.

View Article and Find Full Text PDF

We report a gallium phosphide-on-insulator (GaP-OI) photonic platform fabricated by an intermediate-layer bonding process aiming to increase the manufacture scalability in a low-cost manner. This is enabled by the "etch-n-transfer" sequence, which results in inverted rib waveguide structures. The shallow-etched 1.

View Article and Find Full Text PDF

A well designed ring-core fiber can theoretically support numerous orbital angular momentum (OAM) modes with low crosstalk for space-division-multiplexing (SDM) data transmission, which is considered as a promising solution for overcoming the capacity crunch in optical communication network. However, the accumulated chromatic dispersion in OAM-fiber could limit the data speed and transmission distance of communication systems. A potential solution is to insert a dispersion compensation ring-core fiber with opposite-sign of dispersion in the transmission fiber along the fiber link.

View Article and Find Full Text PDF

In this paper, we design a silica-cladded Germania-doped ring-core fiber (RCF) that supports orbital angular momentum (OAM) modes. By optimizing the fiber structure parameters, the RCF possesses a near-zero flat dispersion with a total variation of <±30 ps/nm/km over 1770 nm bandwidth from 1040 to 2810 nm for the OAM1,1 mode. A beyond-two-octave supercontinuum spectrum of the OAM1,1 mode is generated numerically by launching a 40 fs 120 kW pulse train centered at 1400 nm into a 12 cm long designed 50 mol% Ge-doped fiber, which covers 2130 nm bandwidth from 630 nm to 2760 nm at −40 dB of power level.

View Article and Find Full Text PDF
Article Synopsis
  • * Each mode in the fiber is well-separated from adjacent modes, ensuring stable transmission, which is crucial for effective communication performance.
  • * This fiber represents a promising option for spatial division multiplexing in optical communications, aimed at enhancing capacity for future high-speed systems, particularly over short distances.
View Article and Find Full Text PDF

As the dimension of orbital angular momentum (OAM) is orthogonal to the other degrees of freedom for photon, such as wavelength, it can be utilized to further increase data capacity in the wavelength division multiplexing (WDM) systems. However, the non-zero dispersion-shifted fiber (NZDSF) for the OAM mode has not yet been investigated or even proposed. In this work, we propose and design a ring fiber with low chromatic dispersion for the HE mode, which can serve as NZDSF for its corresponding OAM mode.

View Article and Find Full Text PDF
Article Synopsis
  • - The paper introduces a multi-ring air-core fiber with seven high-index rings, each capable of supporting 62 radially fundamental orbital angular momentum (OAM) modes, totaling 434 OAM modes across the C and L bands (1530 nm to 1625 nm).
  • - It achieves a significant intra-ring modal index difference of over 4×10 for OAM modes with the same topological charge, ensuring effective mode differentiation across bands.
  • - The design demonstrates low crosstalk, maintaining less than -52 dB between adjacent rings at 1550 nm and less than -24 dB across C and L bands after 100-km propagation, making it a strong candidate for enhancing optical fiber communication
View Article and Find Full Text PDF

In this paper, we propose an SiN/SiO horizontal-slot-waveguide-based polarization beam splitter (PBS) with low nonlinearity for on-chip high-power systems. The coupling length ratio between the quasi-TE and quasi-TM modes (/) was optimized to 2 for an efficient polarization splitting. For the single-slot design, the coupling length of the PBS was 281.

View Article and Find Full Text PDF

We numerically and experimentally report flexible spectrum sharing of two asynchronous phase-shift keying (PSK) signals using power division multiplexing. We show that a hybrid quadrature-amplitude-modulated signal is generated when two PSK signals with different power levels are superposed. By using successive interference cancellation, a 20 Gbaud "strong" signal combined with a 9 or 4 Gbaud "weak" signal can be recovered sequentially with bit-error rate performance below the forward error correction threshold.

View Article and Find Full Text PDF

We experimentally demonstrate that a single microresonator can emit two orthogonally polarized individually coherent combs: (i) a strong polarized soliton comb and (ii) an orthogonally polarized continuous wave seeded weaker comb, generated from the first one via cross-phase modulation, sharing the repetition rate of the soliton comb. Experimental results show that the power of the transverse electric-polarized seed can be well below the threshold of comb generation (e.g.

View Article and Find Full Text PDF

We numerically simulate and experimentally demonstrate an approach to potentially enhance the performance of a high-order quadrature amplitude modulation (QAM) channel by adding correlated data to other robust binary-phase-shift-keyed (BPSK) or quadrature-phase-shift-keyed (QPSK) channels. The correlated data are introduced by optically multiplying the BPSK or QPSK channels, already modulated with their own data, by the target high-order QAM data of the same baud rate. After joint detection and signal processing, a ∼3  dB optical signal-to-noise (OSNR) improvement is observed in simulations by comparing the performance of the target QAM channel (from 4QAM to 256QAM) with and without the use of channel correlation.

View Article and Find Full Text PDF

We demonstrate an optical recirculating delay loop by shifting the spatial mode order of orbital-angular-momentum (OAM) beams in the free-space. The desired delay can be selected at the loop output by exploiting the orthogonality of the OAM modes. When sending a 20-Gbaud quadrature-phase-shift-keyed (QPSK) signal through the delay system, three recirculations are demonstrated, each with an additional delay of 2.

View Article and Find Full Text PDF

A low-loss Raman-assisted phase sensitive amplifier (PSA) with a ∼20  dB signal net gain is experimentally demonstrated. The amplitude and phase adjustment for PSA are achieved by using non-uniform Raman gain and a tunable fiber Bragg grating (FBG), respectively. The total component loss of the system is measured to be ∼8  dB.

View Article and Find Full Text PDF

We experimentally investigate the effects of erbium-doped fiber amplifier induced pump noise on soliton Kerr frequency combs for 64-quadrature amplitude modulation (QAM) transmission. We find that the optical carrier-to-noise ratios (OCNRs) of the comb lines across the C-band almost linearly depend on the pump OCNR and are similar for a constant input pump power and noise. For a specific three-soliton state, despite higher comb line power, there is no noticeable OCNR improvement compared to the single-soliton comb.

View Article and Find Full Text PDF

Light beams can be characterized by their complex spatial profiles in both intensity and phase. Analogous to time signals, which can be decomposed into multiple orthogonal frequency functions, a light beam can also be decomposed into a set of spatial modes that are taken from an orthogonal basis. Such decomposition can potentially provide a tool for spatial spectrum analysis, which may enable stable, accurate, and robust extraction of physical object information that may not be readily achievable using traditional approaches.

View Article and Find Full Text PDF

We experimentally insert a flexible number of electro-optical (EO) comb lines into a Kerr frequency comb via EO modulation and demonstrate the use of combined Kerr and EO combs as light sources in coherent communications. The number of EO lines inserted into the Kerr comb can be varied by changing the modulation frequency. Additionally, the inserted EO comb is found to have similar coherence to that of the Kerr comb, as indicated by their linewidths.

View Article and Find Full Text PDF

We experimentally demonstrate pump-linewidth-tolerant wavelength multicasting using microresonator-based soliton Kerr frequency combs. When Kerr comb lines serve as coherent pumps in a periodically poled lithium niobate waveguide, the linewidth of the multicast signal almost remains that of the original signal at different linewidths of Kerr combs, ranging from 100 kHz to 1 MHz. However, in conventional multicasting where free-running (FR) pumps are used, the linewidth of the converted signal significantly increases.

View Article and Find Full Text PDF

An all-optical pilot-tone-based self-homodyne detection scheme using nonlinear wave mixing is experimentally demonstrated. Two scenarios are investigated using (1) multiple wavelength-division-multiplexed channels with sufficient power of the pilot tones and (2) a single channel with a low-power pilot tone. The eye diagram and bit error rate of the system are studied by tuning various parameters such as pump power, relative phase, and pilot-to-signal ratio.

View Article and Find Full Text PDF

Analogous to time signals that can be composed of multiple frequency functions, we use uniquely structured orthogonal spatial modes to create different beam shapes. We tailor the spatial structure by judiciously choosing a weighted combination of multiple modal states within an orthogonal orbital angular momentum (OAM) basis set, creating desired beam intensity "shapes." The weights of the OAM beams to be combined forms a Fourier pair with the spatial intensity distribution in the azimuthal direction of the resultant beam.

View Article and Find Full Text PDF

We experimentally investigate the dependence of Kerr comb generation, comb linewidth, and coherent system performance on the pump linewidth in a microresonator. We find that the generation of the primary comb can have a larger tolerance to the pump linewidth compared with that of the low-phase-noise comb. In addition, the linewidths of the generated combs are almost linearly dependent on the pump linewidth in the primary and low-phase-noise states.

View Article and Find Full Text PDF

We experimentally generate high-coherence primary Kerr combs with multiple sub-lines by using dual pumps and demonstrate the application of a primary comb state in multichannel communications. We find that more than 10 primary comb lines can be generated within the spectrum of modulation instability gain in our microring resonator. The generation is also verified by numerical simulations and the measured linewidth confirms the high coherence of the generated primary comb lines.

View Article and Find Full Text PDF

We propose and simulate the use of the unique intensity gradient of beams carrying orbital angular momentum (OAM) for tracking and localization of an object. We design a three-pixel detector structure to efficiently determine the intensity gradient of an OAM beam. The resultant intensity gradient is then used to calculate the offset direction and distance of the target object from the center of the OAM beam.

View Article and Find Full Text PDF

Simultaneous phase noise mitigation and automatic phase/frequency-locked homodyne reception is demonstrated for a 20-32 Gbaud QPSK signal. A phase quantization function is realized to squeeze the phase noise of the signal by optical wave mixing of the signal, its third-order harmonic, and their corresponding delayed variant conjugates, converting the noisy input into a noise-mitigated signal. In a simultaneous nonlinear process, the noise-mitigated signal is automatically phase- and frequency-locked with a "local" pump laser, avoiding the need for feedback or phase/frequency tracking for homodyne detection.

View Article and Find Full Text PDF