Publications by authors named "Changjin Shao"

The double perovskite material CsAgBiBr, characterized by high stability, low toxicity, and excellent optoelectronic properties, has emerged as a promising alternative to lead-based halide perovskites in photovoltaic applications. However, its photovoltaic conversion efficiency after integration into solar cell devices is less than 3%, significantly lower than that of traditional perovskite solar cells. While alloying methods have been widely applied in the design of photovoltaic materials, their specific role in modulating the lifetime of photo-generated charge carriers in double-perovskite solar cells remains inadequately explored.

View Article and Find Full Text PDF

In comparison to metal complexes, organic photosensitive dyes employed in photocatalytic hydrogen production exhibit promising developmental prospects. Utilizing the organic dye molecule TA+0 as the foundational structure, a series of innovative organic dyes, denoted as TA1-1 to TA2-6, were systematically designed. Employing first-principles calculations, we methodically explored the modifying effects of diverse electron-donating groups on the R1 and R2 positions to assess their application potential.

View Article and Find Full Text PDF

With the depletion of fossil energy, solar energy has gradually attracted people's attention. Dye-sensitized solar cells have developed rapidly in recent years due to their low cost and high conversion efficiency. In this article, based on the theoretical research on the photovoltaic parameters of DSSCs in the early stages of the research team, we have made an accurate prediction of , , and PCE of C286.

View Article and Find Full Text PDF

In this work, we designed a series of double donor organic dyes, named ME101-ME106, based on experimentally synthesized dye WD8, and further investigated their electronic structure, the stability of the dye/TiO (101) systems, density of states (DOS) and absorption spectra using density functional theory (DFT) and time-dependent DFT (TDDFT). The molar extinction coefficients of all designed dyes are higher than WD8. It's fascinating that ME106 exhibits a smallest energy gap and 75 nm redshifts compared to WD8.

View Article and Find Full Text PDF

Laser dye molecules play an important role in tunable lasers due to enhancing the laser radiation intensity and increasing the laser adjustable range. The broad spectral bandwidth and visible light absorption allows for the evaluation of multiple fluorescence quenching mechanisms such as excition formation, photoinduced electron transfer, and excited-state proton transfer. A series of organic dye molecules (LD1-4、LA2-5、LU1-5、LV1-4、LI1-4) consisting of simple electron donor (D), conjugated bridge (π) and electron acceptor (A) units were designed using first-principles calculations in order to evaluate their potential for applications in tunable lasers.

View Article and Find Full Text PDF

In this work, we designed a series of butterfly type organic dyes, named ME07-ME13 by introducing such as triphenylamine, phenothiazine, coumarin groups etc. as electron donors and further investigated their absorption spectra using density functional theory (DFT) and time-dependent DFT (TDDFT). All designed dyes cover the entire visible absorption spectrum from 300 to 800nm.

View Article and Find Full Text PDF

The cyano group (CN) of the acceptor in organic sensitizers plays an important role for highly efficient dye-sensitized solar cells. In this paper, three 5, 6-difluoro-2,1,3-benzothiadiazole (DFBTD) organic molecules with different number of CN units, named ME15, ME16 and ME17, were investigated by the density functional theory (DFT) and time-dependent DFT (TDDFT). We analyzed the CNs effects on the electronic structures, optical properties, adsorption modes and electron transfer and injection.

View Article and Find Full Text PDF

Based on the experimentally synthesized dye JZ145, we designed a series of novel D-A-π-A dyes SPL201-SPL211 with different π-conjugated bridges and a new auxiliary withdrawing group for highly efficient dye-sensitized solar cells (DSSCs) using density functional theory (DFT) and time-dependent DFT(TDDFT). The molecular structures, energy levels, absorption spectra, light-harvesting efficiency (LHE), driving force of injection(ΔGinj) and regeneration(ΔGreg), electron dipole moment (μnormal) and lifetime of the first excited state(τ) were all scrutinized in details. Results reveal that the additional withdrawing group A2 and the π-conjugated group di-η-hexyl-substituted cyclopentadithiophene (CPDT) are more promising functional groups for the organic dyes with D-A-π-A structure.

View Article and Find Full Text PDF

Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor-π-acceptor (D-π-A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 - BUCT30 dyes show smaller HOMO-LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes.

View Article and Find Full Text PDF