Publications by authors named "Changjin Hu"

A novel system for measuring net photochemical ozone production rates in the atmosphere based on cavity ring-down spectroscopy (OPR-CRDS) was developed. The system consists of two chambers (a reaction chamber and a reference chamber) and a dual-channel O-CRDS detector. To minimize the wall loss of O in the chambers, the inner surfaces of both chambers are coated with Teflon film.

View Article and Find Full Text PDF

Formaldehyde (HCHO) is a tracer of volatile organic compounds (VOCs), and its concentration has gradually decreased with the reduction in VOC emissions in recent years, which puts forward higher requirements for the detection of trace HCHO. Therefore, a quantum cascade laser (QCL) with a central excitation wavelength of 5.68 μm was applied to detect the trace HCHO under an effective absorption optical pathlength of 67 m.

View Article and Find Full Text PDF

Background: Long non-coding RNA regulator of reprogramming (LINC-RoR) has shown different expressions in a variety of tumors as a stem cell inducer through reprogramming regulation. However, its role and regulation mechanisms in colorectal cancer (CRC) are still unclear.

Materials And Methods: Quantitative real-time PCR and Western blot were performed to examine LINC-RoR expression in paired CRC samples and cell lines.

View Article and Find Full Text PDF

Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300μg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles.

View Article and Find Full Text PDF

C6 hexenols are one of the most significant groups of volatile organic compounds with biogenic emissions. The lack of corresponding kinetic parameters and product information on their oxidation reactions will result in incomplete atmospheric chemical mechanisms and models. In this paper, experimental and theoretical studies are reported for the reactions of OH radicals with a series of C6 hexenols, (Z)-2-hexen-1-ol, (Z)-3-hexen-1-ol, (Z)-4-hexen-1-ol, (E)-2-hexen-1-ol, (E)-3-hexen-1-ol, and (E)-4-hexen-1-ol, at 298 K and 1.

View Article and Find Full Text PDF

Exploration of the low-lying structures of atomic or molecular clusters remains a fundamental problem in nanocluster science. Basin hopping is typically employed in conjunction with random motion, which is a perturbation of a local minimum structure. We have combined two different sampling technologies, "random sampling" and "compressed sampling", to explore the potential energy surface of molecular clusters.

View Article and Find Full Text PDF

Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm.

View Article and Find Full Text PDF

Secondary organic aerosol (SOA) formed from C1-initiated oxidation of toluene was investigated in a home-made smog chamber. The size distribution and chemical composition of SOA particles were measured using aerodynamic particle sizer spectrometer and the aerosol laser time-of-flight mass spectrometer (ALTOFMS), respectively. According to a large number of single aerosol diameter and mass spectra, the size distribution and chemical composition of SOA were obtained statistically.

View Article and Find Full Text PDF

The gas-phase organic compounds resulting from OH-initiated photooxidation of isoprene have been investigated on-line by VUV photoionization mass spectrometry based on synchrotron radiation for the first time. The photoionization efficiency curves of the corresponding gaseous products as well as the chosen standards have been deduced by gating the interested peaks in the photoionization mass spectra while scanning the photon energy simultaneously, which permits the identification of the pivotal gaseous products of the photooxidation of isoprene, such as formaldehyde (10.84 eV), formic acid (11.

View Article and Find Full Text PDF

We report the combination of a vacuum ultraviolet photoionization mass spectrometer, operating on the basis of synchrotron radiation, with an environmental reaction smog chamber for the first time. The gas- and pseudo-particle-phase products of OH-initiated isoprene photooxidation reactions were measured on-line and off-line, respectively, by mass spectrometry. It was observed that aldehydes, methacrolein, methyl vinyl ketone, methelglyoxal, formic acid, and similar compounds are the predominant gas-phase photooxidation products, whereas some multifunctional carbonyls and acids mainly exist in the particle phase.

View Article and Find Full Text PDF

The laser induced predissociation dynamics of the B Rydberg state of CH(3)I following two-photon absorption of a pump pulse was studied with femtosecond pump-probe photoelectron imaging coupled with time-resolved mass spectroscopy. The predissociation lifetime was measured to be 1.55 ps induced by the crossing between the B state and the repulsive A-band.

View Article and Find Full Text PDF

Ultrafast processes of p-bromofluorobenzene are studied with femtosecond time-resolved photoelectron imaging spectroscopy. The photoelectron image revealed four photoelectron rings centered at 0.39, 0.

View Article and Find Full Text PDF

Photodissociation dynamics and rotational wave packet coherences of o-bromofluorobenzene are studied by femtosecond time-resolved photoelectron imaging [figure: see text]. The decay of different photoelectron rings shows the population decay of states from which the lifetimes of different states are determined. The variation of photoelectron angular distributions reflects the evolution of rotational coherences.

View Article and Find Full Text PDF

Photoionization of chlorine and bromine atoms following photodissociation of CH(2)BrCl was studied in the wavelength range of 231-238 nm by photoelectron imaging technique. Final state-specific speed and angular distributions of the photoelectron were recorded. Analysis of relative branching ratios to different levels of Cl(+) and Br(+) revealed that the final ion level distributions are generally dominated by the preservation of the ion-core configuration of the intermediate resonant state.

View Article and Find Full Text PDF

Photoionization of the iodine atom following methyl iodide A-band photodissociation was studied over the wavelength range of 245.5-261.6 nm by photoelectron imaging technique.

View Article and Find Full Text PDF