The Changjiang Estuary and adjacent East China Sea are well-known hypoxic aquatic environments. Eutrophication-driven hypoxia frequently occurs in coastal areas, posing a major threat to the ecological environment, including altering community structure and metabolic processes of marine organisms, and enhancing diversion of energy shunt into microbial communities. However, the responses of microbial communities and their metabolic pathways to coastal hypoxia remain poorly understood.
View Article and Find Full Text PDFClimate change and eutrophication are accelerating ocean deoxygenation, leading to a global decline in oxygen levels. The East China Sea, frequently experiencing deoxygenation events, harbors diverse microbial communities. However, the response of these communities to the changing deoxygenation dynamics remains poorly understood.
View Article and Find Full Text PDFMarine organic matter fuels the growth of microbial communities, shaping the composition of bacteria that specialize in its breakdown. However, responses of free-living (FL) and particle-associated (PA) bacterial communities to the changing pools of dissolved organic matter (DOM) and particulate organic matter (POM) remained unclear. This study investigates the composition of size-fractionated bacterial communities, DOM and POM in coastal waters over a 22-day period that includes a diatom bloom.
View Article and Find Full Text PDFChirality, a fundamental property of matter, is often overlooked in the studies of marine organic matter cycles. Dihydroxypropanesulfonate (DHPS), a globally abundant organosulfur compound, serves as an ecologically important currency for nutrient and energy transfer from phytoplankton to bacteria in the ocean. However, the chirality of DHPS in nature and its transformation remain unclear.
View Article and Find Full Text PDFEstuarine-offshore sediments accumulate substantial particulate organic matter, containing organic sulfur as a key component. However, the distribution and sources of organic sulfur in such environments remain poorly understood. This study investigated organic sulfur in the Yangtze River Estuary and adjacent East China Sea.
View Article and Find Full Text PDF