Publications by authors named "Changill Ban"

Periostin is associated with several diseases, including cancers. Therefore, monitoring blood periostin levels is a powerful tool for diagnosing various diseases and identifying their severity. However, conventional detection methods pose several challenges, including high costs.

View Article and Find Full Text PDF

As a counterpart to antibody-drug conjugates (ADCs), aptamer-drug conjugates (ApDCs) have been considered a promising strategy for targeted therapy due to the various benefits of aptamers. However, an aptamer merely serves as a targeting ligand in ApDCs, whereas the antibody enables the unexpected therapeutic efficacy of ADCs through antibody-dependent cellular cytotoxicity (ADCC). In this study, we developed a tumor-specific aptamer with an effector function and used it to confirm the feasibility of more potent ApDCs.

View Article and Find Full Text PDF

Here, we proposed an enzyme-linked oligonucleotide assay (ELONA) for yellow fever (YF) diagnosis that uses a pair of aptamers, YFns1-4 and YFns1-31. The aptamers were selected to specifically bind to nonstructural protein 1 (NS1), which is secreted at a high concentration after YF infection. We applied the aptamers which did not interfere with each other on binding to the NS1 in a sandwich ELONA.

View Article and Find Full Text PDF

We report an EN2-specific (K = 8.26 nM) aptamer, and a sensitive and specific enzyme-linked oligonucleotide assay (ELONA) for rapid and sensitive colorimetric detection of bladder and prostate cancer biomarker EN2 in urine. The assay relies on an aptamer-mediated hybridization chain reaction (HCR) to generate DNA nanostructures that bind to EN2 and simultaneously amplify signals.

View Article and Find Full Text PDF

Cell-free DNA (cfDNA) analysis, specifically circulating tumor DNA (ctDNA) analysis, provides enormous opportunities for noninvasive early assessment of cancers. To date, PCR-based methods have led this field. However, the limited sensitivity/specificity of PCR-based methods necessitates the search for new methods.

View Article and Find Full Text PDF

We demonstrate for the first time a fast aptamer generation method based on the screen-printed electrodynamic microfluidic channel device, where a specific aptamer selectively binds to a target protein on channel walls, following recovery and separation. A malaria protein as a model target, lactate dehydrogenase (PvLDH) was covalently bonded to the conductive polymer layer formed on the carbon channel walls to react with the DNA library in a fluid. Then, the AC electric field was symmetrically applied on the channel walls for inducing the specific binding of the target protein to DNA library molecules.

View Article and Find Full Text PDF

Well-ordered bioreceptors on atomically flat Au surfaces can be a high-performance biosensor. Cardiac troponin I proteins (cTnIs) have been regarded as a specific biomarker for acute myocardial infarction (AMI). Here, we report the accurate detection of cTnIs using an aptamer-immobilized Au nanoplate platform.

View Article and Find Full Text PDF

The soluble interleukin-2 receptor α (sIL-2Rα) is a broad indicator of clinical disease activity in various inflammatory diseases. Here we have developed, for the first time, a rapid, washing-free colorimetric aptasensor based on a sIL-2Rα aptamer (K =1.33 nm).

View Article and Find Full Text PDF

The development of a multiplexed sensing platform is necessary for highly selective, sensitive, and rapid screening of specific antibiotics. In this study, we designed a novel multiplex aptasensor for antibiotics by fluorescence resonance energy transfer (FRET) strategy using DNase I-assisted cyclic enzymatic signal amplification (CESA) method combined with aptamer/graphene oxide complex. The aptamers specific for sulfadimethoxine, kanamycin, and ampicillin were conjugated with Cyanine 3 (Cy3), 6-Carboxyfluorescein (FAM), and Cyanine 5 (Cy5), respectively, and graphene oxide (GO) was adopted to quench the fluorescence of the three different fluorophores with the efficiencies of 94.

View Article and Find Full Text PDF

The emergence of a plant vascular system was a prerequisite for the colonization of land; however, it is unclear how the photosynthate transporting system was established during plant evolution. Here, we identify a novel translational regulatory module for phloem development involving the zinc-finger protein JULGI (JUL) and its targets, the 5' untranslated regions (UTRs) of the SUPPRESSOR OF MAX2 1-LIKE4/5 (SMXL4/5) mRNAs, which is exclusively conserved in vascular plants. JUL directly binds and induces an RNA G-quadruplex in the 5' UTR of SMXL4/5, which are key promoters of phloem differentiation.

View Article and Find Full Text PDF

is a lipophilic commensal bacterium mainly found on the skin and in the gastrointestinal tract. Pathophysiological effects of have recently been reported not only in acne progression but in various diseases. As an emerging mode of bacterial communication, extracellular vesicles (EVs) have been demonstrated to conduct critical pathophysiological functions.

View Article and Find Full Text PDF

Background And Objectives: Information about the role of the stromal cell-derived factor-1α (SDF-1α)/chemokine receptor type 4 (CXCR4) axis in ischemic postconditioning (IPOC) is currently limited. We hypothesized that the SDF-1α/CXCR4 signaling pathway is directly involved in the cardioprotective effect of IPOC.

Methods: Isolated rat hearts were divided into four groups.

View Article and Find Full Text PDF

In this study, we developed a sandwich aptamer-based screen-printed carbon electrode (SPCE) using chronoamperometry for the detection of cardiac troponin I (cTnI), one of the promising biomarkers for acute myocardial infarction (AMI). Disposable three-electrode SPCEs were manufactured using a screen printer, and various modifications such as electrodeposition of gold nanoparticles and electropolymerization of conductive polymers were performed. From the bare electrode to the aptamer-immobilized SPCE, all processes were monitored and analyzed via various techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Purpose: Extracellular vesicle (EV) has been reported to conduct critical pathophysiological functions as an emerging mode of communication in bacteria. Recently, Propionibacterium acnes, an anaerobic Gram-positive human commensal found in the skin and gastrointestinal tract, has drawn increasing attention as an underestimated pathogen in a variety of diseases.

Experimental Design: For the comprehensive understanding of P.

View Article and Find Full Text PDF

Structural elements are key elements for understanding single-stranded nucleic acid folding. Although various RNA structural elements have been documented, structural elements of single-stranded DNA (ssDNA) have rarely been reported. Herein, we determined a crystal structure of PvLDH in complex with a DNA aptamer called pL1.

View Article and Find Full Text PDF

Electrochemical biosensors using five anticancer drug and lipid molecules attached on the conducting polymer layer to obtain the orientation of drug molecules toward cancer cells, were evaluated as sensing materials and their performances were compared. Conjugation of the drug molecules with a lipid, phosphatidylcholine (PC) has enhanced the sensitivity towards leukemia cells and differentiates cancer cells from normal cells. The composition of each layer of sensor probe was confirmed by electrochemical and surface characterization experiments.

View Article and Find Full Text PDF

Correct diagnosis and successful therapy are extremely important to enjoy a healthy life when suffering from a disease. To achieve these aims, various cutting-edge technologies have been designed and fabricated to diagnose and treat specific diseases. Among these technologies, aptamer-nanomaterial hybrids have received considerable attention from scientists and doctors because they have numerous advantages over other methods, such as good biocompatibility, low immunogenicity and controllable selectivity.

View Article and Find Full Text PDF

The angiotensin II type I receptor (AGTR1) has been implicated in diverse aspects of human disease, from the regulation of blood pressure and cardiovascular homeostasis to cancer progression. We sought to investigate the role of AGTR1 in cell proliferation, epithelial-mesenchymal transition (EMT), migration, invasion, angiogenesis and tumor growth in the breast cancer cell line MCF7. Stable overexpression of AGTR1 was associated with accelerated cell proliferation, concomitant with increased expression of survival factors including poly(ADP-ribose) polymerase (PARP) and X-linked inhibitor of apoptosis (XIAP), as well as extracellular signal-regulated kinase (ERK) activation.

View Article and Find Full Text PDF

Interleukin-17 receptor A (IL-17RA) has been recognized as a valuable biomarker for diverse diseases, including autoimmune diseases. In this work, an electrochemical biosensor with great sensitivity and selectivity toward IL-17RA was fabricated using an IL-17RA aptamer (Kd=14.00nM) for the first time.

View Article and Find Full Text PDF

Cardiac troponin I (cTnI) is well-known as a promising biomarker for the early diagnosis of acute myocardial infarction (AMI). In this work, single-stranded DNA aptamers against cTnI were identified by the Systematic Evolution of Ligands by Exponential enrichment (SELEX) method. The aptamer candidates exhibited a high selectivity and sensitivity toward both cTnI and the cardiac Troponin complex.

View Article and Find Full Text PDF

This paper describes a new and facile approach for the formation of pore-spanning bilayer lipid membranes (BLMs) within a poly(dimethylsiloxane) (PDMS) microfluidic device. Commercially, readily available polycarbonate (PC) membranes are employed for the support of BLMs. PC sheets with 5 μm, 2 μm, and 0.

View Article and Find Full Text PDF

In this study, we synthesized dual aptamer-modified silica nanoparticles that simultaneously target two types of breast cancer cells: the mucin 1 (MUC1)(+) and human epidermal growth factor receptor 2 (HER2)(+) cell lines. Dual aptamer system enables a broad diagnosis for breast cancer in comparison with the single aptamer system. The dye-doped silica nanoparticles offer great stability with respect to photobleaching and enable the accurate quantification of breast cancer cells.

View Article and Find Full Text PDF

Background: Polymyxin B resistance protein D (PmrD) plays a key role in the polymyxin B-resistance pathway, as it is the signaling protein that can act as a specific connecter between PmrA/PmrB and PhoP/PhoQ. We conducted structural analysis to characterize Escherichia coli (E. coli) PmrD, which exhibits different features compared with PmrD in other bacteria.

View Article and Find Full Text PDF

It is well known that the engrailed-2 (EN2) protein, a biomarker for prostate cancer, strongly binds to a specific DNA sequence (5'-TAATTA-3') to regulate transcription. Based on this intrinsic property, DNA probes with additional flanked sequences were designed and optimized. Various measurements, such as electrophoresis mobility shift assay, surface plasmon resonance, and quantitative fluorescence assay were performed to investigate the feasibility of the DNA probes.

View Article and Find Full Text PDF

Although various studies related to nanoparticles-based photothermal therapy have been actively performed, an epoch-making photothermolysis therapy exhibiting both high selectivity and efficiency has yet not been discovered. For the first time, we have developed novel valuable therapeutic complexes, namely, dual aptamer-modified gold nanostars, for the targeting of prostate cancers, including PSMA(+) and PSMA(-) cells. The synthesized probes were characterized through several techniques, including UV-VIS spectral analysis, DLS analysis, zeta potential measurements, and TEM imaging, and were subsequently subjected to cytotoxicity tests, cell uptake confirmation, and in vitro photothermal therapy.

View Article and Find Full Text PDF