Publications by authors named "Changhua Jiang"

Crewed outer-space missions require adequate motor capacity among astronauts, whose sensorimotor system is disturbed by microgravity. Stressors other than microgravity, e.g.

View Article and Find Full Text PDF

Background: Mental workload is a critical consideration in complex man-machine systems design. Among various mental workload detection techniques, multimodal detection techniques integrating electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals have attracted considerable attention. However, existing EEG-fNIRS-based mental workload detection methods have certain defects, such as complex signal acquisition channels and low detection accuracy, which restrict their practical application.

View Article and Find Full Text PDF

Our results provide insights into heat response mechanisms among Clematis species. Overexpressing CvHSFA2 enhanced the heat resistance of yeast and silencing NbHSFA2 reduced the heat resistance of tobacco. Clematis species are commonly grown in western and Japanese gardens.

View Article and Find Full Text PDF

Clematis plants play an important role in botanical gardens. Heat stress can destroy the activity, state and conformation of plant proteins, and its regulatory pathway has been well characterized in and some crop plants. However, the heat resistance response mechanism in horticultural plants including has rarely been reported.

View Article and Find Full Text PDF

Clematis florida Thun (CfT) is an ornamental and medicinal plant. It is a cold resistant but heat sensitive species and deserves to be further investigated to improve its adaptability to heat stress. Exploring the molecular mechanism potential via an omic-analysis constitutes a promising approach towards improving heat tolerance of CfT.

View Article and Find Full Text PDF

There exist differences in the heat tolerance of Chinese rose varieties, and high temperature in summer can lead to failure of blooming in non-heat-tolerant Chinese rose varieties. We cloned a heat shock protein 70 gene (designated RcHSP70) from heat-tolerant varieties of Chinese rose (Rosa hybrida L.) to elucidate the molecular mechanism of heat tolerance and improve the quality of Chinese rose.

View Article and Find Full Text PDF

Plant is endowed with sessile habit and nutrient acquisition mainly through the root organ, which also provides an excellent model to study stem cell fate and asymmetric division due to well-organized cell layers and relatively simple cell types in root meristem. Besides genetic material DNA wrapped around histone octamer, chromatin structure determined by chromatin modification including DNA methylation, histone modification and chromatin remodeling also contributes greatly to the regulation of gene expression. In this review, we summarize the current progresses on the molecular mechanisms of chromatin modification in regulating root development.

View Article and Find Full Text PDF

The late embryogenesis abundant (LEA) protein family is a large protein family that is closely associated with resistance to abiotic stresses in many organisms, such as plants, bacteria and animals. In this study, we isolated a LEA gene, RcLEA, which was cytoplasm-localized, from Rosa chinensis. RcLEA was found to be induced by high temperature through RT-PCR.

View Article and Find Full Text PDF

Cold stress resulting from chilling and freezing temperatures substantially reduces crop production worldwide. To identify genes critical for cold tolerance in plants, we screened Arabidopsis thaliana mutants for deregulated expression of a firefly luciferase reporter gene under the control of the C-REPEAT BINDING FACTOR2 (CBF2) promoter (CBF2:LUC). A regulator of CBF gene expression1 (rcf1-1) mutant that is hypersensitive to cold stress was chosen for in-depth characterization.

View Article and Find Full Text PDF

In our previous study, we identified a Rosa chinensis heat shock protein (HSP) gene, RcHSP17.8, which was induced by abiotic stresses, such as high temperature and osmotic stress. To analyze the expression of RcHSP17.

View Article and Find Full Text PDF

Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein known to contain the unusual amino acid hypusine. It is a highly conserved protein found in all eukaryotic organisms. Although originally identified as a translation initiation factor, recent studies suggest that eIF5A is mainly involved in translation elongation, mRNA turnover and decay, cell proliferation, and programmed cell death.

View Article and Find Full Text PDF

Among the heat shock proteins (HSPs) of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. To improve our understanding of sHSPs, we have characterized RcHSP17.8 from Rosa chinensis.

View Article and Find Full Text PDF