Publications by authors named "Changhoo Chun"

By developing and implementing a local temperature control system, such as a root zone, with a high energy efficiency heat source, we can ensure both yield and energy efficiency against extreme temperatures. This system, designed with practicality in mind, has a remarkably positive impact on paprika plants' growth and yield in greenhouse cultivation. In the summer season, paprika plants were grown with no cooling, nutrient solution cooling (NSC) and the combination of NSC and substrate surround cooling (SSC) (NSC + SSC).

View Article and Find Full Text PDF

The induction of leaf injuries, including leaf chlorosis and epinasty, by continuous light in tomato plants is one of the most interesting and mysterious phenomena regarding plant interactions with light, the mechanism of which has not yet been revealed. To gain further insights into this particular response of tomato plants, we cultivated tomato seedlings (Solanum lycopersicum cv. Momotaro) for 14 days under continuous light with different ratios of red and blue light and compared their performance to those grown under continuous or 14/10-h photoperiodic white light using novel methods to quantitatively evaluate the level of leaf chlorosis and epinasty.

View Article and Find Full Text PDF

The antimicrobial activity of acetone, hexane, dichloromethane, and methanol extracts from leaves, stems, immature green fruits, and red fruits of tomato plants was examined against six phytopathogens. The minimum inhibitory concentration (MIC) of the acetonic extracts from these four plant parts was lower than that of the other solvents. Among the acetonic extracts, tomato leaves had a lower MIC than the other tomato parts.

View Article and Find Full Text PDF

Variation in bioactive compounds content was assessed in antioxidant rich June-bearing strawberry cultivars. Ascorbic acid, anthocyanin, and ellagic acid content were analyzed in ripe fruits of 14 cultivars. The bioactive content in strawberry fruit was found to vary significantly among cultivars and from year to year.

View Article and Find Full Text PDF

Elucidation of the roles of circadian associated factors requires a better understanding of the molecular mechanisms of circadian rhythms, control of flowering time through photoperiodic pathways, and photosensory signal transduction. In Arabidopsis, the APRR1 quintet, APRRs 1, 3, 5, 7, and 9, are known as central oscillator genes. Other plants may share the molecular mechanism underlying the circadian rhythm.

View Article and Find Full Text PDF