Publications by authors named "Changhong Ke"

Controlling the thermal expansion of ceramic materials is important for many of their applications that involve high-temperature processing and/or working conditions. In this study, we investigate the thermal expansion properties of additively manufactured alumina that is reinforced with boron nitride nanotubes (BNNTs) over a broad temperature range, from room temperature to 900 °C. The coefficient of thermal expansion (CTE) of the BNNT-alumina nanocomposite increases with temperature but decreases with an increase in BNNT loading.

View Article and Find Full Text PDF

A study is presented of the thermal-mechanical noise and response to sound of microphones that are designed to be driven by the viscous forces in air rather than by sound pressure. Virtually all existing microphone designs are intended to respond to sound pressure. The structures examined here consist of thin, micro-scale, cantilever beams.

View Article and Find Full Text PDF

The oxidation mechanism of atomically thin molybdenum disulfide (MoS) plays a critical role in its nanoelectronics, optoelectronics, and catalytic applications, where devices often operate in an elevated thermal environment. In this study, we systematically investigate the oxidation of mono- and few-layer MoSflakes in the air at temperatures ranging from 23 °C to 525 °C and relative humidities of 10%-60% by using atomic force microscopy (AFM), Raman spectroscopy and x-ray photoelectron spectroscopy. Our study reveals the formation of a uniform nanometer-thick physical adsorption layer on the surface of MoS, which is attributed to the adsorption of ambient moisture.

View Article and Find Full Text PDF

The aberrantly up-regulated CDK9 can be targeted for cancer therapy. The CDK inhibitor dinaciclib (Dina) has been found to drastically sensitizes cancer response to TRAIL-expressing extracellular vesicle (EV-T). However, the low selectivity of Dina has limited its application for cancer.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is an aggressive malignancy, and its effective treatment has been hampered by drug resistance. Extracellular vesicle (EV) delivery of TNF-related apoptosis-inducing ligand (TRAIL) (EV-T) was demonstrated to be superior to recombinant TRAIL (rTRAIL) for cancer treatment previously. And AZD5582, a potent antagonist of inhibitors of apoptosis proteins (IAPs) can potentiate apoptosis-based cancer therapies.

View Article and Find Full Text PDF

Extracellular vesicle (EV) delivery of TNF-related apoptosis-inducing ligand (TRAIL) (EV-T) has been shown to be highly efficient for cancer treatment when combined with the potent cyclin-dependent kinase (CDK) inhibitor dinaciclib (SCH727965, Dina). However, only topical administration was previously tested for cancer treatment, leaving unknown the efficacy of systemic therapy by EV-T and Dina. In this study we hypothesize that the systemic application of EV-T and Dina can be performed through EV-mediated co-delivery of TRAIL and Dina.

View Article and Find Full Text PDF

Neuroblastoma is a metastatic brain tumor particularly common in children. The cure rate is below 50% for patients of high-risk condition. Novel therapeutic agents and approaches are needed to improve the cure rate.

View Article and Find Full Text PDF

A series of mitochondria-targeted triphenylphosphonium conjugated C-3 modified betulin were synthesized and evaluated against tumor cells. As a result, a new derivative 13 i, the conjugate of 3-O-(3'-acetylphenylacetate)-betulin with triphenylphosphonium, was identified as the one with the best anti-tumor effect. Conjugate 13 i significantly inhibited HCT116 cells with IC at 0.

View Article and Find Full Text PDF

Compared to other vertebrates, the regenerative capacity of appendages in mammals is very limited. Deer antlers are an exception and can fully regenerate annually in postnatal mammals. This process is initiated by the antler stem cells (AnSCs).

View Article and Find Full Text PDF

Although mesenchymal stem cells (MSCs) can be engineered to deliver the TNF-related apoptosis-inducing ligand (TRAIL) as an effective anticancer therapy, the clinical application is hampered by the costly manufacturing of therapeutic MSCs. Therefore, it is needed to find an alternative cell-free therapy. In this study, TRAIL-armed endoplasmic reticulum (ER)-derived nanosomes (ERN-T) are successfully prepared with an average size of 70.

View Article and Find Full Text PDF

Accumulating evidences suggest that amyloid β (Aβ)-peptide plays a key role in pathogenesis of Alzheimer's disease (AD) through aggregation and deposition into plaques in neuronal cells. Membrane components such as cholesterol and gangliosides not only enhance the production of amyloidogenic Aβ fragments, but also appear to strengthen Aβ-membrane interaction. Ginsenoside Rb1 (GRb1) is a major active component of Panax, which is widely used to improve learning and memory.

View Article and Find Full Text PDF

Tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) is a promising anti-cancer agent that rapidly induces apoptosis in cancer cells. Unfortunately, the clinical application of recombinant TRAIL (rTRAIL) has been hampered by its common cancer resistance. Naturally TRAIL is delivered as a membrane-bound form by extracellular vesicles (EV-T) and is highly efficient for apoptosis induction.

View Article and Find Full Text PDF

Boron nitride nanotubes (BNNTs) are a unique class of light and strong tubular nanostructure and are highly promising as reinforcing additives in ceramic materials. However, the mechanical strength of BNNT-ceramic interfaces remains largely unexplored. Here we report the first direct measurement of the interfacial strength by pulling out individual BNNTs from silica (silicon dioxide) matrices using in situ electron microscopy techniques.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

The structural stability and mechanical integrity of boron nitride nanotubes (BNNTs) in high temperature environments are of importance in pursuit of their applications that are involved with extreme thermal processing and/or working conditions, but remain not well understood. In this paper, we perform an extensive study of the impacts of high temperature exposure on the structural and mechanical properties of BNNTs with a full structural size spectrum from nano- to micro- to macro-scale by using a variety of in situ and ex situ material characterization techniques. Atomic force microscopy (AFM) and high resolution transmission electron microscopy measurements reveal that the structures of individual BNNTs can survive at up to 850 °C in air and capture the signs of their structural degradation at 900 °C or above.

View Article and Find Full Text PDF

Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb.

View Article and Find Full Text PDF

Although the anti-CD20 antibody Rituximab has revolutionized the treatment of Non-Hodgkin Lymphoma (NHL), resistance to treatment still existed. Thus, strategies for suppressing Rituximab-resistant NHLs are urgently needed. Here, an anti-CD20 nanocluster (ACNC) is successfully constructed from its type I and type II mAb (Rituximab and 11B8).

View Article and Find Full Text PDF

The CD20-directed monoclonal antibody rituximab (RTX) established a new era in the treatment of non-Hodgkin lymphoma (NHL); however, suboptimal response and/or resistance to RTX still limit its clinical merits. Although four effector mechanisms are validated to participate in CD20-based immunotherapy, including complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, caspase-dependent apoptosis, and lysosome-mediated programmed cell death (PCD), they could hardly be synchronously activated by any anti-CD20 mAb or mAb derivative until now. Herein, a novel mAb nanocomb (polyethylenimine polymer-RTX-tositumomab [PPRT nanocomb]) was firstly constructed through mass arming two different anti-CD20 mAbs (RTX and tositumomab) to one polymer by nanotechnology.

View Article and Find Full Text PDF

The application of chemotherapeutic drug adriamycin (ADR) in cancer therapy is limited by its side effects like high toxicity and insolubility. Nanomedicine offers new hope for overcoming the shortcomings. But how to increase in vivo stability and to control intracellular drug release is a key issue for nano-based formulations.

View Article and Find Full Text PDF

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.

View Article and Find Full Text PDF

The migration of mesenchymal stem cells (MSCs) plays a key role in tumor-targeted delivery vehicles and tumor-related stroma formation. However, there so far has been no report on the distribution of cell surface molecules during the VEGF-induced migration of MSCs. Here, we have utilized near-field scanning optical microscopy (NSOM) combined with fluorescent quantum dot (QD)-based nano-technology to capture the functional relationship between CD44 and CD29 adhesion molecules on MSCs and the effect of their spatial rearrangements.

View Article and Find Full Text PDF

Comparing with the traditional therapeutic methods, newly developed cancer therapy based on the nanoparticulates attracted extensively interest due to its unique advantages. However, there are still some drawbacks such as the unfavorable in vivo performance for nanomedicine and undesirable tumor escape from the immunotherapy. While as we know that the in vivo performance strongly depended on the nanocarrier structural properties, thus, the big gap between in vitro and in vivo can be overcome by nanocarrier's structural tailoring by fine chemical design and microstructural tuning.

View Article and Find Full Text PDF

The length of nanotubes is a critical structural parameter for the design and manufacture of nanotube-based material systems and devices. High-precision length control of nanotubes by means of mechanical cutting using a scriber has not materialized due to the lack of the knowledge of the appropriate cutting conditions and the tube failure mechanism. In this paper, we present a quantitative nanomechanical study of the cutting of individual boron nitride nanotubes (BNNTs) using atomic force microscopy (AFM) probes.

View Article and Find Full Text PDF

Understanding the interfacial stress transfer between carbon nanotubes (CNTs) and polymer matrices is of great importance to the development of CNT-reinforced polymer nanocomposites. In this paper, an experimental study is presented of the interfacial strength between individual double-walled CNTs and poly(methyl methacrylate) (PMMA) using an in situ nanomechanical single-tube pull-out testing scheme inside a high-resolution electron microscope. By pulling out individual tubes with different embedded lengths, this work reveals the shear lag effect on the nanotube-polymer interface and demonstrates that the effective interfacial load transfer occurs only within a certain embedded length.

View Article and Find Full Text PDF

Integrin-mediated human umbilical vein endothelial cells (HUVECs) adhesion to the extracellular matrix plays a fundamental role in tumor-induced angiogenesis. Celastrol, a traditional Chinese medicine plant, has possessed anticancer and suppressed angiogenesis activities. Here, the mechanism underling the antiangiogenesis capacity of celastrol was investigated by exploring the effect of celastrol on β1(CD29) integrin-mediated cell adhesion and migration.

View Article and Find Full Text PDF