When bubbles collapse near a wall, they typically experience an asymmetric deformation. This collapse leads to the creation of a jet that strikes the bubble interface, causing the formation of a toroidal bubble and the subsequent release of a water-hammer shock. In this study, we present a systematic analysis of the collapse of a toroidal bubble in an open field or adjacent to a flat wall using high-fidelity numerical simulation.
View Article and Find Full Text PDFA new fractional non-Fourier (Cattaneo) photovoltaic (PV) model is presented to enhance the thermal performance of a PV system combined with a heat spreader (HS). The fractional Cattaneo model is shown to be effective in examining transient processes across the entirety of a PV system, in contrast to the conventional Fourier model's inability to predict system performance. Consequently, a comparison is conducted between the classical Fourier model with the fractional Fourier and fractional Cattaneo models for the PV system.
View Article and Find Full Text PDFMagnetic resonance elastography (MRE) is commonly regarded as the imaging-based gold-standard for liver fibrosis staging, comparable to biopsy. While ultrasound-based elastography methods for liver fibrosis staging have been developed, they are confined to a 1D or a 2D region of interest and to a limited depth. 3D Shear Wave Absolute Vibro-Elastography (S-WAVE) is a steady-state, external excitation, volumetric elastography technique that is similar to MRE, but has the additional advantage of multi-frequency excitation.
View Article and Find Full Text PDFObjective: To explore the clinical effects of treatment denture on difficult edentulous cases before complete denture restoration.
Methods: Thirty-six patients who experienced unsuccessful restoration of conventional complete dentures were included in this study. Treatment dentures were fabricated to solve issues such as abnormal occlusion, tissue surface problems, and neuromuscular dysfunction of the stomatognathic system caused by systemic diseases.
Background: A successful clinical outcome for implanted tissue-engineered bone is dependent on the establishment of a functional vascular network. Gene-enhanced tissue engineering represents a promising approach for vascularization and osteogenesis. In the present study, we tested the angiogenesis and osteogenesis efficacy of gelatin as the scaffold carrier in combination with a virus encoding the HIF-1α gene in a rat alveolar bone defect model.
View Article and Find Full Text PDFAutofocus methods are conventionally based on capturing the same scene from a series of positions of the focal plane. As a result, it has been difficult to apply this technique to scanning remote sensing cameras where the scenes change continuously. In order to realize autofocus in scanning remote sensing cameras, a novel autofocus method is investigated in this paper.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2012
Linear power amplifiers are critical components in ultrasonic imaging systems that implement chirp-coded excitation. Bench-top commercial power amplifiers are usually used in academic laboratories for high-frequency ultrasound imaging, and the imaging performance depends greatly on these general-purpose instruments. To achieve a wide dynamic range, a power amplifier consisting of two stages is developed for chirp-coded ultrasound imaging applications through the implementation of custom-designed broadband 1:1 transformers and the optimization of feedback circuits.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
December 2011
Aim: To explore the influence of two kinds of crown margin designs on MMP-8 and TIMP-1 levels in gingival crevicular fluid(GCF).
Methods: 16 cases of patients who needed full crowns were divided randomly into two groups: subgingival group and gingival crest group. The GCF were taken before tooth preparation, one month, three months and six months after crown placement.
IEEE Trans Ultrason Ferroelectr Freq Control
December 2011
This paper describes the design of a front-end circuit consisting of an integrated preamplifier with a Sallen-Key Butterworth filter for very-high-frequency ultrasonic transducers and a low-power handheld receiver. This preamplifier was fabricated using a 0.18-μm 7WL SiGe bi-polar complementary metal oxide semiconductor (BiCMOS) process.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2011
A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2011
This paper describes the development of a high-frequency 256-element linear ultrasonic array utilizing an interdigitally bonded (IB) piezo-composite. Several IB composites were fabricated with different commercial and experimental piezoelectric ceramics and evaluated to determine a suitable formulation for use in high-frequency linear arrays. It was found that the fabricated fine-scale 2-2 IB composites outperformed 1-3 IB composites with identical pillar- and kerf-widths.
View Article and Find Full Text PDFIn order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images.
View Article and Find Full Text PDFBuilding photoacoustic imaging (PAI) systems by using stand-alone ultrasound (US) units makes it convenient to take advantage of the state-of-the-art ultrasonic technologies. However, the sometimes limited receiving sensitivity and the comparatively narrow bandwidth of commercial US probes may not be sufficient to acquire high quality photoacoustic images. In this work, a high-speed PAI system has been developed using a commercial US unit and a custom built 128-element piezoelectric-polymer array (PPA) probe using a P(VDF-TrFE) film and flexible circuit to define the elements.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2010
We have developed a dual-modality biomedical imaging probe utilizing intravascular ultrasound (IVUS) and optical coherence tomography (OCT). It consists of an OCT probe, a miniature ultrasonic transducer and a fixed mirror. The mirror was mounted at the head of the hybrid probe 45° relative to the light and the ultrasound beams to change their propagation directions.
View Article and Find Full Text PDFWe report an integrated ultrasound (US) and optical coherence tomography (OCT) probe and system for intravascular imaging. The dual-function probe is based on a 50 MHz focused ring US transducer, with a centric hole for mounting OCT probe. The coaxial US and light beams are steered by a 45° mirror to enable coregistered US∕OCT imaging simultaneously.
View Article and Find Full Text PDFPlaque rupture is the leading cause of acute coronary syndromes and stroke. Plaque formation, otherwise known as stenosis, preferentially occurs in the regions of arterial bifurcation or curvatures. To date, real-time assessment of stenosis-induced flow reversal remains a clinical challenge.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2010
High-frequency (HF) ultrasound imaging has been shown to be useful for non-invasively imaging anatomical structures of the eye and small animals in biological and pharmaceutical research, achieving superior spatial resolution. Cardiovascular research utilizing mice requires not only realtime B-scan imaging, but also ultrasound Doppler to evaluate both anatomy and blood flow of the mouse heart. This paper reports the development of an HF ultrasound duplex imaging system capable of both B-mode imaging and Doppler flow measurements, using a 64-element linear array.
View Article and Find Full Text PDFWe report on a dual-modality optical coherence tomography (OCT) ultrasound (US) system for intravascular imaging. To the best of our knowledge, we have developed the first integrated OCT-US probe that combines OCT optical components with an US transducer. The OCT optical components mainly consist of a single-mode fiber, a gradient index lens for light-beam focusing, and a right-angled prism for reflecting light into biological tissue.
View Article and Find Full Text PDFThis work reports the potential use of high-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz.
View Article and Find Full Text PDFDevelopment of PMN-PT single crystal/epoxy 1-3 composites for high-frequency ultrasonic transducers application is presented. The composite was fabricated by using a DRIE dry etching process with a 45% volume fraction of PMN-PT. A 35 MHz ultrasound flat transducer was fabricated with the composite, which was found to have an effective electromechanical coupling coefficient of 0.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2009
High-frequency PIN-PMN-PT single crystal ultrasound transducers at center frequencies of 35 MHz and 60 MHz were successfully fabricated using lead indium niobate-lead magnesium niobate-lead titanate (0.23PIN- 0.5PMN-0.
View Article and Find Full Text PDFThe zebrafish (Danio rerio) is an emerging model for cardiovascular research. The zebrafish heart regenerates after 20% ventricular amputation. However, assessment of the physiological responses during heart regeneration has been hampered by the small size of the heart and the necessity of conducting experiments in an aqueous environment.
View Article and Find Full Text PDFFrom a copper target, laser-ablated plasma was investigated by spectral- and temporal-resolved emission spectroscopy. With the presence of a 0.8 T steady magnetic field, the emission of the expanding plasma showed significant enhancements of the spectral lines for all neutral, singly, and doubly ionized species.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2008
A novel fiber-optic hydrophone based on a dual-polarization, short-cavity fiber grating laser as the sensing element is described. Wet chemical etching was used to fabricate a thinned fiber sensor to extend its frequency response as well as spatial resolution. The lateral beam profile at the focal plane of a 40-MHz lens-focused lithium niobate (LiNbO) transducer was measured with the fiber sensor, and a tomographic technique was used to compute the transducer profile, which is compared with that obtained by a PVDF hydrophone.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2008
The development of a field-programmable gate array (FPGA)-based pulsed-wave Doppler processing approach in pure digital domain is reported in this paper. After the ultrasound signals are digitized, directional Doppler frequency shifts are obtained with a digital-down converter followed by a low-pass filter. A Doppler spectrum is then calculated using the complex fast Fourier transform core inside the FPGA.
View Article and Find Full Text PDF