Publications by authors named "Changho Hong"

This study aims to develop a theoretical model for predicting the permeability of concrete in underground structures using compressive elastic waves. This research is motivated by the necessity of monitoring the permeability of concrete used in critical underground infrastructure, such as tunnels and radioactive waste disposal sites, to ensure their long-term safety. Increased permeability owing to crack generation can lead to groundwater inflow, undermining the structural integrity of these facilities.

View Article and Find Full Text PDF

An atomistic understanding of dry-etching processes with reactive molecules is crucial for achieving geometric integrity in highly scaled semiconductor devices. Molecular dynamics (MD) simulations are instrumental, but the lack of reliable force fields hinders the widespread use of MD in etching simulations. In this work, we develop an accurate neural network potential (NNP) for simulating the etching process of amorphous SiN with HF molecules.

View Article and Find Full Text PDF

Ternary metal oxides are crucial components in a wide range of applications and have been extensively cataloged in experimental materials databases. However, there still exist cation combinations with unknown stability and structures of their compounds in oxide forms. In this study, we employ extensive crystal structure prediction methods, accelerated by machine-learned potentials, to investigate these untapped chemical spaces.

View Article and Find Full Text PDF

In this paper, we propose a deterministic secure quantum communication (DSQC) protocol based on the BB84 system. We developed this protocol to include quantum entity authentication in the DSQC procedure. By first performing quantum entity authentication, it was possible to prevent third-party intervention.

View Article and Find Full Text PDF

Semiconducting inorganic materials with band gaps ranging between 0 and 5 eV constitute major components in electronic, optoelectronic and photovoltaic devices. Since the band gap is a primary material property that affects the device performance, large band-gap databases are useful in selecting optimal materials in each application. While there exist several band-gap databases that are theoretically compiled by density-functional-theory calculations, they suffer from computational limitations such as band-gap underestimation and metastable magnetism.

View Article and Find Full Text PDF

We designed an encoding scheme, using quantum dots (QDs), for single logical qubit information by encoding quantum information onto four-photon decoherence-free states to acquire immunity against collective decoherence. The designed scheme comprised of QDs, confined in single-sided cavities (QD-cavity systems), used for arbitrary quantum information, encoded onto four-photon decoherence-free states (logical qubits). For our scheme, which can generate the four-photon decoherence-free states, and can encode quantum information onto logical qubits, high efficiency and reliable performance of the interaction between the photons and QD-cavity systems is essential.

View Article and Find Full Text PDF

Complex geological processes form multiple layers and change pore water chemistry, saturation level, and temperature. Eventually, the strata hinder interpreting electrical resistivity data. There are no studies that theoretically explore the effects of electrode geometries and multiple layered systems on laboratory electrical resistivity measurements.

View Article and Find Full Text PDF

Quantum phase estimation (QPE) is the key procedure in various quantum algorithms. The main aim of the QPE scheme is to estimate the phase of an unknown eigenvalue, corresponding to an eigenstate of an arbitrary unitary operation. The QPE scheme can be applied as a subroutine to design many quantum algorithms.

View Article and Find Full Text PDF

We represent an optical scheme using cross-Kerr nonlinearities (XKNLs) and quantum dot (QD) within a single-sided optical cavity (QD-cavity system) to generate three-photon entangled W state containing entanglement against loss of one photon of them. To generate W state (three-photon) with robust entanglement against loss of one photon, we utilize effects of optical nonlinearities in XKNLs (as quantum controlled operations) and QD-cavity system (as a parity operation) with linearly optical devices. In our scheme, the nonlinear (XKNL) gate consists of weak XKNLs, quantum bus beams, and photon-number-resolving measurement to realize controlled-unitary gate between two photons while another nonlinear (QD) gate employs interactions of photons and an electron of QD confined within a single-sided optical cavity for implementation of parity gate.

View Article and Find Full Text PDF

We propose a controlled quantum teleportation scheme to teleport an unknown state based on the interactions between flying photons and quantum dots (QDs) confined within single- and double-sided cavities. In our scheme, users (Alice and Bob) can teleport the unknown state through a secure entanglement channel under the control and distribution of an arbitrator (Trent). For construction of the entanglement channel, Trent utilizes the interactions between two photons and the QD-cavity system, which consists of a charged QD (negatively charged exciton) inside a single-sided cavity.

View Article and Find Full Text PDF

We design schemes to generate and distribute hybrid entanglement and hyperentanglement correlated with degrees of freedom (polarization and time-bin) via weak cross-Kerr nonlinearities (XKNLs) and linear optical devices (including time-bin encoders). In our scheme, the multi-photon gates (which consist of XKNLs, quantum bus [qubus] beams, and photon-number-resolving [PNR] measurement) with time-bin encoders can generate hyperentanglement or hybrid entanglement. And we can also purify the entangled state (polarization) of two photons using only linear optical devices and time-bin encoders under a noisy (bit-flip) channel.

View Article and Find Full Text PDF