Publications by authors named "Changge Ji"

Macrocyclization is a critical strategy in rational drug design that can offer several advantages, such as enhancing binding affinity, increasing selectivity, and improving cellular permeability. Herein, we introduce MacGen, a web tool devised for structure-based macrocycle design. MacGen identifies exit vector pairs within a ligand that are suitable for cyclization and finds 3D linkers that can align with the geometric arrangement of these pairs to form macrocycles.

View Article and Find Full Text PDF

Fragment growing is an important ligand design strategy in drug discovery. In this study, we present FragGrow, a web server that facilitates structure-based drug design by fragment growing. FragGrow offers two working modes: one for growing molecules through the direct replacement of hydrogen atoms or substructures and the other for growing via virtual synthesis.

View Article and Find Full Text PDF

Fast and proper treatment of the tautomeric states for drug-like molecules is critical in computer-aided drug discovery since the major tautomer of a molecule determines its pharmacophore features and physical properties. We present MolTaut, a tool for the rapid generation of favorable states of drug-like molecules in water. MolTaut works by enumerating possible tautomeric states with tautomeric transformation rules, ranking tautomers with their relative internal energies and solvation energies calculated by AI-based models, and generating preferred ionization states according to predicted microscopic p.

View Article and Find Full Text PDF

Molecular hybridization is a widely used ligand design method in drug discovery. In this study, we present MolHyb, a web server for structure-based ligand design by molecular hybridization. The input of MolHyb is a protein file and a seed compound file.

View Article and Find Full Text PDF

The protein-ligand scoring function plays an important role in computer-aided drug discovery and is heavily used in virtual screening and lead optimization. In this study, we developed a new empirical protein-ligand scoring function with amino acid-specific interaction components for hydrogen bond, van der Waals, and electrostatic interactions. In addition, hydrophobic, π-stacking, π-cation, and metal-ligand interactions are also included in the new scoring function.

View Article and Find Full Text PDF

Antibiotic resistance caused by β-lactamases, particularly metallo-β-lactamases, has been a major threat to public health globally. New Delhi metallo-β-lactamase-1 (NDM-1) represents one of the most important metallo-β-lactamases; the production of NDM-1 in bacterial pathogen significantly reduces the efficacy of β-lactam antibiotics, including life-saving carbapenems. Herein, we have demonstrated stereochemically altered cephalosporins as potent inhibitors against NDM-1, as well as mutants of NDM.

View Article and Find Full Text PDF

Human oral bioavailability (HOB) is a key factor in determining the fate of new drugs in clinical trials. HOB is conventionally measured using expensive and time-consuming experimental tests. The use of computational models to evaluate HOB before the synthesis of new drugs will be beneficial to the drug development process.

View Article and Find Full Text PDF

p is an important property in the lead optimization process since the charge state of a molecule in physiologic pH plays a critical role in its biological activity, solubility, membrane permeability, metabolism, and toxicity. Accurate and fast estimation of small molecule p is vital during the drug discovery process. We present MolGpKa, a web server for p prediction using a graph-convolutional neural network model.

View Article and Find Full Text PDF

The design of efficient computational tools for structure-guided ligand design is essential for the drug discovery process. We hereby present FragRep, a new web server for structure-based ligand design by fragment replacement. The input is a protein and a ligand structure, either from protein data bank or from molecular docking.

View Article and Find Full Text PDF
Article Synopsis
  • * The new Effective Polarizable Bond (EPB) method was developed to enhance protein-ligand docking by incorporating polarization, resulting in significant reductions in error when tested on 38 structures from the Protein Data Bank.
  • * The EPB method improves docking performance and intermolecular hydrogen bonding, with tools for calculating polarized ligand charges available for free on GitHub.
View Article and Find Full Text PDF

X-chromosome-linked inhibitor of apoptosis (XIAP) inhibits cell apoptosis. Overexpression of XIAP is widely found in human cancers. Second mitochondria-derived activator of caspase (SMAC) protein inhibits XIAP through binding with Baculovirus Inhibitor of apoptosis protein Repeat (BIR) 3 or BIR2 domain of XIAP.

View Article and Find Full Text PDF
Article Synopsis
  • The fluctuating charge method allows atomic charges to change based on molecular configuration, attempting to include polarization effects in molecular simulations.
  • However, using Coulomb's formula to calculate energy in this context is theoretically inconsistent with the fluctuating charge mechanics.
  • This study introduces a new approach (Effective Polarizable Bond or EPB) that calculates electrostatic energy through numerical interactions of atomic forces, yielding more accurate results, especially for specific residue-residue interactions in protein systems.
View Article and Find Full Text PDF

Background: Bioisosteric replacement is widely used in drug design for lead optimization. However, the identification of a suitable bioisosteric group is not an easy task.

Methods: In this work, we present MolOpt, a web server for in silico drug design using bioisosteric transformation.

View Article and Find Full Text PDF

Amyloid aggregation initiates from a slow nucleation process, where the association of monomers is unfavorable in energetics. In principle, the enthalpy change for aggregation should compensate the entropy loss as new monomers attach to formed oligomers. However, the classical force fields with fixed point charges failed to yield the correct enthalpy change due to the lack of electrostatic polarization effect on amyloid aggregation.

View Article and Find Full Text PDF

Summary: In this work, we present eMolTox, a web server for the prediction of potential toxicity associated with a given molecule. A total of 174 toxicology-related in vitro/vivo experimental datasets were used for model construction and Mondrian conformal prediction was used to estimate the confidence of the resulting predictions. Toxic substructure analysis is also implemented in eMolTox.

View Article and Find Full Text PDF

Inhibiting of Proprotein Convertase Subtilisin/Kexin-type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR) binding is an effective way for reducing Low Density Lipoprotein cholesterol (LDL-C). Understanding the interaction between PCSK9 and LDLR is useful for PCSK9 inhibitor design. In this work, MD simulations with the standard (non-polarizable) AMBER force field and effective polarizable bond (EPB) force field were performed for wild type and four mutants of PCSK9 and EGFA (Epidermal Growth Factor-like repeat A) domain of LDLR complexes.

View Article and Find Full Text PDF

ES2 is a new type of jatrophane diterpenoid ester isolated from the fructus E. sororia, a traditional Uyghur medicine in China. Here we reported the multidrug resistance (MDR) reversal effect of ES2 in vitro and in vivo by modulating the function of ATP-binding cassette subfamily B member 1 (ABCB1).

View Article and Find Full Text PDF

A major shortcoming of empirical scoring functions is that they often fail to predict binding affinity properly. Removing false positives of docking results is one of the most challenging works in structure-based virtual screening. Postdocking filters, making use of all kinds of experimental structure and activity information, may help in solving the issue.

View Article and Find Full Text PDF
Article Synopsis
  • γ-Glutamyl transpeptidase (GGT) is an enzyme linked to cancer processes and can be a useful biomarker for early cancer detection.
  • A new imaging probe called GANP was developed, which links a GGT substrate to a near-infrared (NIR) fluorophore, enhancing fluorescence when activated by GGT for better imaging.
  • GANP shows high sensitivity and specificity for imaging GGT in live tumor cells and can penetrate deep tissue, making it promising for studying GGT-related diseases in living organisms.
View Article and Find Full Text PDF

We report a direct folding study of seven helical proteins (, Trpcage, , C34, N36, , ) ranging from 17 to 53 amino acids through standard molecular dynamics simulations using a recently developed polarizable force field-Effective Polarizable Bond (EPB) method. The backbone RMSDs, radius of gyrations, native contacts and native helix content are in good agreement with the experimental results. Cluster analysis has also verified that these folded structures with the highest population are in good agreement with their corresponding native structures for these proteins.

View Article and Find Full Text PDF

RNA editing plays an important role in realizing the full potential of a given genome. Different from RNA splicing, RNA editing fine-tunes the sequence of RNA by changing only one or two nucleotides. A-I editing [deamination of adenosine (A) to create inosine (I)] is best characterized in mammals and occurs in the regions of double-stranded RNA (dsRNA).

View Article and Find Full Text PDF

Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop(3-4) in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop(3-4) from open to closed state is observed in 200 ns aMD simulation.

View Article and Find Full Text PDF

Conspectus Electrostatic interaction plays a significant role in determining many properties of biomolecules, which exist and function in aqueous solution, a highly polar environment. For example, proteins are composed of amino acids with charged, polar, and nonpolar side chains and their specific electrostatic properties are fundamental to the structure and function of proteins. An important issue that arises in computational study of biomolecular interaction and dynamics based on classical force field is lack of polarization.

View Article and Find Full Text PDF

An elegant synergistic catalytic system comprising a ruthenium complex with a chiral Brønsted acid was developed for a four-component Mannich/cascade aza-Michael reaction. The ruthenium-associated ammonium ylides successfully trapped with in situ generated imines indicates a stepwise process of proton transfer in the ruthenium-catalyzed carbenoid N-H insertion reaction. The different decomposition abilities of various ruthenium complexes towards diazo compounds were well explained by the calculated thermodynamic data.

View Article and Find Full Text PDF

Energy-coupling factor (ECF) transporters are responsible for uptake of micronutrients in prokaryotes. The recently reported crystal structure of an ECF transporter RibU provided a foundation for understanding the structure and transport mechanism of ECF transporters. In the present study, molecular dynamics (MD) was carried out to study the conformational changes of the S component RibU upon binding by riboflavin.

View Article and Find Full Text PDF